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Abstract: A statistical damage detection and condition assessment scheme for existing structures is developed.

First a virtual work error estimator is defined to express the discrepancy between a real structure and its

analytical model, with which a system identification algorithm is derived by using the improved Newton

method. In order to investigate its properties in the face of measurement errors, the Monte Carlo method is

introduced to simulate the measured data. Based on the identified results, their statistical distributions can be

assumed, the status of an existing structure can be statistically evaluated by hypothesis tests. A 5-story, two-bay

steel frame is used to carry out numerical simulation studies in detail, and the proposed scheme is proved to be

effective.
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The research on structural damage assessment
based on system identification (SI) has been expanded
recently'" . It is classified into two major categories ac-
cording to the properties of input data: dynamic and
static. Both of them have their features. For the dynam-
ic one, the system identification process usually does
not occur at the element level, so it is difficult to exact-
ly determine the damage location. Now researchers pay
more and more attention to developing damage assess-
ment techniques based on the results of the static sys-

. . . 1-3
tem identification!'™

which take advantage of static
system identification in the assessment of an existing
structure’ s condition at the global and element levels.
The literature on static system identification are
relatively fewer than those on the dynamic one. There
are two kinds of error definitions to express the dis-
crepancies between the real structure and the analytical
model: the force error estimator and the displacement
error estimator, with which several methods of structur-
al identification have been proposed. Sanayei et al.'"
proposed the method on the assumption that the dis-
placements should be measured at the same locations
where the external loads were applied. In the paper of
Banan and Hjelmstad” ™, the unknowns comprised
both constitutive parameters and unmeasured displace-
ments. Therefore, the number of unknown variables in-
creased and the stability of the calculating process de-
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creased. Sanayei and Onipede'" proposed an algorithm
in which the unmeasured displacements were con-
densed, but its limitation was that the degrees of free-
dom of measured displacements were fixed in all load
cases. Although those methods are capable of identif-
ying the parameters of structures, the instability prob-
lem in the face of measurement errors still remains.

This paper focuses on improving the identifiability
of the SI algorithm in the face of measurement errors.
First, a virtual work error estimator ( VWEE) is de-
fined to express the difference between the real struc-
ture and its analytical model, which can theoretically
dissolve some influence of measurement errors itself.
The adaptive parameter grouping method is introduced
to deal with the measurement sparse problem. Then the
recursive quadratic programming algorithm is devel-
oped by using the improved Newton method. Finally in
the numerical simulation study of a 5-story and 2-bay
frame structure, the relationships of the input-output er-
rors are investigated in detail and the structural status is
evaluated statistically.

1 System Identification

1.1 Virtual work of error estimators

Consider a linear structure that is variously subjec-
ted to a static load set, which consists of n, load cases.
Each case of forces should be neither equal to any oth-
er case nor a linear combination of the previous cases
of applied forces. Under the k-th load case f,, the meas-
ured displacement vector is A, whose dimension is n,.
If we assume that there be a virtual force vector §f,
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applied along the directions of measured displace-
ments, their corresponding virtual work V,, can be ex-
pressed as
Vi.=8f1A, k=1,2,...n, (1)
By the finite element method, the structure is
parameterized to be an analytical model with n degrees
of freedom. The relationship between f, and its corre-
sponding displacement u, can be described as
fi=K(p)u, k=1,2,...,n, (2)
where the dimensions of f, and u, are n and K(p) is
the structural stiffness matrix, which can be formulated
by the constitutive parameters and the constant matrices

of each element,
N,

m

K(p) =Y, zP AB.D,B, (3)
m=1 u=

where N, is the number of the elements, others are
messages about element m: M, is the total number of
parameters, P, is the constitutive parameter, D, is the
kernel matrix, A,, is the location matrix, and B,, is the
translative matrix. BmTDW, B,, is a constant matrix de-
pending on element geometry only. The virtual work of
the analytical model V,, is

Vo =83 K(p) 'f; k=1,2,....n, (4)
where §f,, is the nodal force vector of §f;,.

The discrepancy of the virtual work between the
real structure and its analytical model is defined as the
index to examine the fitness of the estimated results.

Ei(p) =Vy -Vy =5fng(P) 71f/{ _5f1T/<Ak
k=1,2,...,n, (5)

If K(p) exactly captures the properties of the sys-
tem and the measured data are free from errors, then
Eq. (5) will be zero.

1.2 Parameter estimation algorithm

The square of error value is adopted as a criterion

of judgment.

n,

J(p) = Z,Ek(p)2 (6)

Now the smaller the J(p), the better accuracy of
fitting we obtain. It can be stated as

to find {p,,i=1,2,...,n,}
J(p)—min (7)
subject to {x, <p,<x,,i=1,2,...,n,}

so as to make

It is a nonlinear problem, whose n, is the number
of unknown parameters and x, and x, are the lower
and upper bounds of the unknown parameters, respec-
tively. They are assumed to be zero and three times the
true values, which ensures that the estimated results do
not become negative or too large.

To solve this nonlinear optimal problem, we use
the improved Newton method'” to develop a recursive

quadratic programming algorithm, which requires the
gradient ( Jacobi vector) and the Hessian matrix of
J(p). They are as follows:
Jacobi vector
G= p) (8)
op

where the dimension of G is n, and its i-th component
is expressed as

aJ(p) ZJ i =1,2,..,n

And
J, =2(8f5K () 'f, - of A O LK (p) % :
K(p) "'f, =2E,(p)ofsK(p) - ""’gl(f’)K( ) (9)
Hessian matrix

where the dimension of H is n, xn, and its j-th com-
ponent in the i-th line is expressed as

_&Jp) _ . _ i
f ., ;Hk i=12,...m;] =1,2,..,n,
And
~10K
H, =20, K(p) K (p) -
J
10K
oK) LK (p) f, +4Ep)
-10K(P) gy -19K(p)
T K(p) o 9P g, 11
of K(p) o, K(p) " p, (p)~ fk( )
Now the recursive procedure can be set up,
Ap=-H'G (12)
P =p +aAp (13)

where i is the iteration number, and e, is a damping co-

i+1

efficient matrix to assure that J(p'" ) is smaller than
J(p").In order to control the desired accuracy in the i-
dentified parameters, two criteria are chosen to check
the algorithm for convergence. The first one is the
changes of error function J(p), and the second one is
the changes in the parameters, p,'*'/p,’, where j is the
order number of parameters. When any of the limits are
reached, the algorithm is considered to have con-
verged.
1.3 Adaptive parameter grouping algorithm

In order to deal with the measurement sparse
problem, the adaptive parameter group subdivision al-
gorithm proposed by Hjelmstad and Shin'® is intro-
duced. The calculation starts from a baseline grouping.
The main idea of the scheme is to isolate damaged
parts in the finite element model by sequentially subdi-

viding parameter groups. Each subdivision stage corre-
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sponds to a specific parameter grouping. So after each
subdivision stage, a new set of parameter groups is es-
tablished and the group parameters are estimated. By
subdividing a suspicious parameter group, parameters
become more sensitive and more representative of the
real values. In this process, the parameterized stiffness
matrix, shown in Eq. (3), is rewritten as

N My,
Kp) =Y Y >p,.ABD,B, (14

n=lmef,u=1
where N is the number of parameter groups and the in-
dex set (2, contains all of the element numbers associat-
ed with parameter group n. The subdivision of parame-
ter groups implies that the number of groups and,
hence, the number of parameters are variables in the
parameterization model.

2 Data Perturbation Method

If the measured data were free of error, a single
cycle of calculation by the above algorithm would be
enough to track damage out. Measurements are, unfor-
tunately, never free from error. There are also model
errors between the real structure and the analytical
model, such as manufacturing inconsistencies, residual
or thermal stresses, or material flaws, which are not the
topic here. We only deal with the errors of measure-
ments, which cause the result errors. Even though the
experiment is repeated under identical conditions, the
measured data are random variables with a certain dis-
tribution, so the estimated parameters based on them
are also considered as random variables. Here, we use
the Monte Carlo method to simulate the input data and
investigate the properties of the above proposed algo-
rithm.

2.1 Modeling of input error

The input data consist of force vectors and dis-
placement vectors. In one load case, let only one free-
dom be applied by a force and all other freedoms be
zero. So the force vector can be assumed to consist of
no errors and the displacement vector contains noise.
We can simulate the measured data A by adding an er-
ror vector n with the assumed distribution in the calcu-
lated displacement values'' .

A, = QK(p)'f, +n (15)
where K(p) is the true stiffness matrix of the existing
structure and @ is the Boolean matrix that extracts the
measured responses from the complete displacement
vector.

The most commonly used distribution of n is a
normal one with zero mean and standard deviation ¢ If
we set the confidence interval at 95%, the level of in-

put error 1, is equal to 1. 96¢. That is

., L L
7 19 4 (16)

In this way, the error function Eq. (5) can be de-
scribed as

ng

E(p) =E\(p) - Zn (17)

where E(p) is the error function with no measurement
errors, 1, is the i-th component of the noisy vector. It is
considered that with the increase of n,, the influence of
those errors decreases because the mean of n is zero.
2.2 Statistical indices

For the simulated measured data{A,, k =1,2, ...,
n.}, the estimated results produce a sample {p, ,,k =1,
2,..,n.:j=1,2,...,n,}, where n_ is the number of ob-
servations and p;, is the j-th parameter of the results
from the k-th observation. So the sample size of every
variable is n.. The statistical indices are used to charac-
terize our results. Taking p,; as the intact value of the j-
th parameter, the intact rate of the j-th parameter in the
k-th observation is

b,
E,= -
pej

The mean of the precise rate M; and the standard

(18)

deviation D; of the j-th parameter are

1 (Y
M, =—YE, (19)
n. =1
1 IlC
D; =100 n—Z(E,_k -M)* (20)
c k=1

The whole sample size of estimated parameters is
n, x n.. It is desirable to reduce this large number to
single grand mean G,, and single standard deviation
Gyp.

1
Gy = 2 M, (21)
b j=1
1 Plb
Go = [ -2, D (22)
b j=1

Now it is possible to establish an input-output er-
ror relationship with a given [, from which single val-
ues of G,, and G, are obtained.

2.3 Damage assessment using hypothesis test

With the sample {pj,k,kz 1,2,..,n5j=1,2, ...,
n, }, the statistical distribution of p; , can be determined
by the method of maximum likelihood"™ . Suppose that
the measurements are obtained under the same condi-
tions for both the current structure and its perfect one,
so its statistical distributions N, (1, o”) of system pa-
rameters can be reasonably assumed to be the same as



580 Cai Jing, and Wu Zhishen

those of the current structure. It is defined as the base-
line distribution and the mean E, , is equal to 1, which
represents its intact status. Those distributions can be
taken as the properties of the proposed identification al-
gorithm in the face of measurement errors. If we set the
significance level at «, the hypothesis test definition
can be defined, which is the same as the one in Ref.
[3]. The damage status of a member in the current
structure can be evaluated with (1 — ) x 100% confi-
dence. The severity of damage S, can be calculated" .

3 Numerical Simulation Study

The purpose of this simulation study is twofold.
First, it clearly shows the meaning of some of the
quantities that have been defined. Secondly, by simula-
ting the sample of measured data, the performance of
the algorithm can be investigated with the measurement
errors taken into consideration.

Consider that a S5-story, two-bay steel frame
shown in Fig. 1 is used as an example. The frame is di-
vided into 25 frame elements. Each joint node has three
degrees of freedom. Elements 1 to 15 make up the col-
umns, and elements 16 to 25 make up the beams of the
frame. The cross-sectional areas and the moment of in-
ertia of elements are listed in Tab. 1 and the elastic
modulus of every element of the structure is assumed
as follows:

1) Undamaged structure

Young’ s modulus for all elements is 206. 8 GPa.

2) Current structure (or real structure)

24 25 .
A
13 14 15
22 23
12
10 20 11 2
g
o0
7 8 9 g
18 19 ‘;’
v
4 5
16 17 6
1 2 3 |
77777 7777 i

|< 3.658 m >|

Fig.1 A 5-story, two-bay steel frame

Tab.1 Cross sectional properties

Member Area/cm? Moment of inertia/cm*
1 to 15 1 606 442 246
16 to 21 1 606 442 246
22 to 25 1 406 422 246

Damage in the structure is assumed as a reduction
in the Young’ s modulus of element, details of which
will be stated for different cases of the study.

The applied load set and the corresponding meas-
ured situations are shown in Fig. 2. There is only one
load case in this study. In order to examine the results
affected by the number of measurements, two cases of
measured situations are used. We set n, =30. The num-
ber of parameter groups is set as not greater than 6.

(’\10 kN*m

77777 77777 77777 77777 77777 77777 77777- 777777 77777
Load case Case A Case B

Measured DOFS in
observation points

Fig.2 Applied load and two cases of measurement state

3.1 One damaged member

The element 13 is damaged with a 60% reduction
in Young’ s modulus. All of the other elements are con-
sidered to be intact. The input error I, is from 1% to
10% and the measured data are generated by Eq. (16).
Fig.3 and Fig. 4 show the relationship between the I,
and the single grand mean and standard deviation.
From the two figures it can be clearly seen that the re-
sults from case B are better than the ones from case A.

1.2
—o— Case A
1.1k —= Case B
=1.04
0.9
0.8 L 1 L 1 1
0 2 4 6 8 10

Input error/ %
Fig.3 Variations of single grand mean with input error
30r
25+ —*— Case A

—a— Case B

20

15

Gsp/ %

10 -

5F

0 1 1 1 1 1
0 2 4 6 8 10

Input error/ %
Fig.4 Variations of single grand standard deviation with

input error
If there is only one set of measured data in a prac-
tical application, only one sample of estimated results
can be obtained. Based on the results as shown in Fig.
4,1t is assumed that ¢ =8% and 7% in the baseline
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distribution N, (1, o) in the face of 5% measurement
error for case A and case B, respectively. Then, if we
set « =5% , we obtain K, =1.65 and C =0. 87, 0. 89,
respectively. One sample is taken from 30 estimated
samples. By hypothesis tests, the damaged member is
identified as damaged and two undamaged members
are assessed as damaged members. Therefore, the sta-
tus of the current structure of all members is evaluated
and the results are plotted in Fig. 5. Since the damage
severities of other undamaged members are small com-
pared with those of the damaged member, it is conclu-
ded that there are no damage in those members. Those
results have 95% confidence.

6()._
M Estimated value
S50 Assumed value
£
5300
)
g“zo—
Ollllll 11 . | T TN T T T T T T |
1 5 9 1

Element number

(a)
701
M Estimated value

Assumed value
50
40F
30
20
10 -
5 9 13

17 21 25
Element number

(b)
Fig.5 Statistical status evaluation. (a)Case A; (b)Case B

Damage severity/ %

3.2 Multiple damaged members

Let us consider the situation of the existing struc-
ture in which three members are damaged to different
degrees. The stiffness deterioration is 50% , 70% , 25%
in members 5, 10 and 21, respectively. All of other ele-
ments are considered to be intact. The estimated results
of all elements, averaged over 30 Monte Carlo trials
and 25 elements, the single grand mean and the single
grand standard deviation can be calculated in the face
of measurement errors from 1% to 10% . To examine
the input-output error relationship, it is desirable to plot
the G,, and G, values against the I, values, which are
shown in Fig. 6 and Fig.7, respectively. They are used
to estimate the output error for a given input error, and
they can also be used to determine the allowable I, by
limiting output error for the experiment design. The

measurement noise tolerance is expected to vary from
structure to structure based on the locations of meas-
urements and the topology of the structure. Even if the
results depend on cases, we can determine the stability
of the algorithm approximately based on Fig. 6 and
Fig. 7. From them it can be considered that the results

from case B are better than the results from case A.
1.31

1.2
1.1
=
O
1.04

0.9

1 1 1 1 1
0'80 2 4 6 8 10

Input error/ %

Fig.6 Variations of single grand mean with input error
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Fig.7 Variations of single grand standard deviation with
input error

Based on the results as shown in Fig. 7, it is rea-
sonably assumed that o =15% and 4% in the baseline
distribution N, (1, o’) in the face of a 4% measure-
ment error for case A and case B, respectively. Then if
we set @ =5% , we obtain K, =1.65 and C =0.76 and
0. 93.

By using one sample from the estimated result, the
status of the current structure is presented in Fig. 8. By
hypothesis tests, three damaged members are identified
as damaged and three undamaged members are also
taken as damaged. Since the damage severity of the un-
damaged members is small compared with that of the
damaged members, it is concluded that there is little
possibility of damage in the undamaged members.
Those results have 95% confidence.

4 Conclusion

Local damage not detected and not rectified may
cause more damage and eventually lead to structural
failure. This paper proposes the virtual work error esti-
mator and develops the statistical evaluation scheme of
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B Estimated value
[ Assumed value

Damage severity/ %

9

Element number

(a)

H Estimated value
Assumed value

Damage severity/ %
&
T

13 17

Element number

(b)
Fig.8 Statistical status evaluation. (a)Case A; (b)Case B

an existing structure. The procedure is illustrated and
tested using the Monte Carlo simulation method in nu-
merical simulations.

In this paper, the expected result is theoretically
verified that more measurement locations are better
than fewer even though there are measurement errors as
Eq. (18) shows and is proved in numerical simula-
tions. It can be considered that the algorithm based on
the proposed virtual work error estimator is an effective
tool in evaluating the structural status”"” . Future re-
search is required to apply this method to experimental
work.
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