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based on wavelet transform and co-integration theory

Du Xiuli'?

Wang Fengquan'

(" School of Civil Engineering, Southeast University, Nanjing 210096, China)

(*College of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China)

Abstract: A kind of method of modal identification subject to ambient excitation is presented. A new synthesis

stationary signal based on structural response wavelet transform and wavelet coefficient processes co-integration

is obtained. The new signal instead of structural response is used in identifying the modal parameters of a non-

stationary system, combined with the method of modal identification under stationary random excitation—the

NEXT method and the adjusted continuous least square method. The numerical results show that the method can

eliminate the non-stationarity of structural response subject to non-stationary random excitation to a great

extent, and is highly precise and robust.
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Modal identification of engineering structures has
wide application prospects. The identified modal pa-
rameters can be used to estimate and locate structural
damage, and forecast structural future response; there-
fore, it can be used in structural health monitoring of
bridges and large buildings. The traditional models and
methods on modal identification, which rely only on
structural response, are based on stationary exterior
random excitation ( especially white noise). In fact,
random loads, such as wind load and vehicle load
which act on bridges and large buildings, are almost
non-stationary. Because of lack of cognition and under-
standing of non-stationary random excitation, the rele-
vant research results in the literature are rather few
now. The primary results are classified into the follow-
ing categories: () Identifying modal parameters by
using the ARIMA model and the VARMA process
which sample output response as a time series'' ' ; (2)
Identifying modes based on the autocorrelation and
cross-correlation cohen time-frequency transform of
structural response'”*'; analogously, Zhang et al.'”
expanded structural response through Gabor transform,
then identified modal parameters just as in Ref. [3]; 3
Restructuring signal by wavelet multi-scale denois-
ing'; @ In Refs. [7 — 8], authors first decomposed
random excitation into white noise and non-white
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noise, and computed the cross-correlation function of
response, then identified modal parameters based on
modal functions and residual of the EMD method.

Based on the characteristics of wavelet transform,
this paper puts forward a new modal identification
method for a system under non-stationary random exci-
tation. The key idea is to construct a new stationary
signal based on the wavelet coefficients of non-station-
ary response and co-integration theory, then to identify
modal parameters through the stationary signal, com-
bined with the method of modal identification under
stationary random excitation—the NEXT method and
the adjusted continuous least square method. The new
identification method can be applied in all non-station-
ary linear systems.

1 NExT" Method under Stationary Excita-
tion and Adjusted Continuous LS Method

The n-dimensional structural dynamic equation is

given by
Mi(1) +Cx(1) +Kx(t) =f(1) (D

where x(1) = {x,(t), ..., x,(t)}" is an n-dimensional
displacement vector; M, C and K are mass, damping
and stiffness matrices, respectively; X(#) and ¥(¢) are
velocity and acceleration vectors; f(f) denotes stationa-
ry exterior random excitation.

The NEXT method is described as follows.

Post-multiplying Eq. (1) by a reference scalar re-
sponse process x,(s) (s <t?),and taking expectations of
each side, let 7 =t — s, then we obtain
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MR(7) +CR(7) +KR(7) =0 (2)
where R(7) = E[x(t) x,(t —7)] ={R, (7), ...,
R.(7)}".

The adjusted continuous least square method of
modal identification, which was based on the continu-
ous least square method in Refs. [9 —10], has high pre-
cision both in theory and in practice. In order to illus-
trate the method, an undamped architecture under non-
stationary random excitation is discussed. Assuming
that the mass matrix of the structure is known, the stiff-

. . 11
ness matrix K is as follows'":

K +K, -k,

-K, K,

In order to estimate the stiffness coefficients K, =

{K.>- KX”}T, we rewrite Eq. (2) in the form
A(T)Ky = -MR(7) (3)
where
R (1) R(7) —R,(7)
Ry(1) =R\(1) Ry(7) —Ry(7)

A(T) = .
R, (1) =R, (1)
R, (1) =R, (1)

Sampling from R(7) and substituting the sample
data of size N into Eq. (3) yields
AK, =R, (4)
where A = {(A (h))", ..., (A(Nh))"}"; R, =
—{(MR(h))", ..., (MR(Nh))"}"; h is the sampling
period. Then the LSE of K, is given by
K,=(A"A) 'A'R, (5)

2 Modal Identification Method under Non-
stationary Random Excitation

2.1 Wavelet transform

Assume that the following system is an LTI sys-
tem under non-stationary random excitation, which is
due to various ambient excitations out of control.
Therefore, the system’s structural response is also non-
stationary because of the linearity of the system.

The n-dimensional structural dynamic equation is
given by

Mi(t) + Cx(t) +Kx(t) =u(t) (6)

where x(t), M, C and K are the same as in section 1,
and u (t) is non-stationary exterior excitation. Let
W.(b,a) be the continuous wavelet coefficient of

50, Wylb,a) = [ x,(1) é:ﬁ(?)dt,where w(h) s

u d*W.(b, m) i dW,(b, m)

a given mother wavelet and satisfies the admissibility

condition; a >0 is the dilation scale; b € R is the trans-

lation scale. Let W.(b,a) = {W, (b, a), ..., W, (b,
a)}", then one can obtain the following theorems.

Theorem 1'"*!

order differentiable, then W,(b, a) satisfies

Iy d’ Wf(lza, a) cc dW,(b, a)

db db

If function ¢ (t) is at least two-

+KW.(b,a) =s(b, a)

(7)
where s(b,a) = JRu(t) \;y;(?)dz is the wavelet
a

transform of u(1).
Generally, discrete wavelet transform is adopted
for computing concision. Applying dyadic wavelet
t=b
o

transform W,(b, m) = jx(z)z%’(p( )dt (mel)
R

to Eq. (7) yields

e b + KW (b,m) = s(b, m)

(8)
Theorem 2''”  If () is just as in theorem 1
and {W (b, m): b e R} is the m-th scale wavelet coef-

ficient process of x (t), then linear combination

Y «, W (b, m) satisfies Eq. (8).

2.2 Co-integration theory

Wavelet transform decomposes a signal through
time-frequency analysis. When a signal is non-stationa-
ry, different scale wavelet coefficient processes are also
generally non-stationary. However, the present better
methods of ambient vibration are mainly based on sta-
tionary exterior random excitation. If we can transform
non-stationary response into a stationary signal, the
modal identification methods under stationary excita-
tion can then be used. Here we introduce co-integration
theory first.

Co-integration describes the long-term balance re-
lation of the system, particularly with the economic
system. In detail, it describes the balance relation of not
fewer than two non-stationary processes. Although ev-
ery process can be non-stationary, a particular linear
combination of these processes can be stationary.

2.3 Modal identification

On the basis of the above results, in order to elim-
inate the influence of non-stationary excitation on re-
sponse, we decompose x(¢) by wavelet transform and

construct linear combination » «,W(b,m) . If the

linear combination is tested as stationary, we can re-
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place structural response x(¢) with it to identify modal
parameters. However, the combined new signal should
include original responses as much as possible. In order
to realize it, we choose wavelet coefficient processes
from the point of view of energy, ensuring that the
difference between the linear combination of wavelet
coefficient processes and x(¢) is as small as possible,
and the linear combination is stationary.

The whole procedure is as follows:

(D Decomposing response x(¢) by wavelet trans-
form, let {W.(b, m): b € R} be the m-scale wavelet co-
efficient process of x(7).

(2) Choose wavelet coefficient processes to con-

[Z Iwie,

m) || *db — JHx(t) ||2dt‘ is controlled within a given

struct a new signal, and ensure that

range. Assume that the chosen wavelet coefficients are
{W(b,k):beR}, {W (b, k,):beR}, ..., {W (b,
k):beR}.

(3 Construct

linear combination y(b) =

(m=1,2,

m

1
2 o; W (b, k;) , where linear coefficients «
i=1
...,1) can be obtained by the LSE method. Let v(b) =
1
z o;8(b, k;) . By theorem 2 we know that y(b) satis-
i=1

fies
My(b) + Cy(b) +Ky(b) =v(b) (9)

(@) If the stationarity of the linear combination can
be tested, we replace original response x(¢) with it to
identify modal parameters just as in section 1.
2.4 Choosing mother wavelet

Whether the mother wavelet is suitable for analy-
sis will directly influence the precision and robustness
of modal identification. Therefore, before we decom-
pose x(¢) by wavelet transform, we should first know
about some properties of x (), such as the extent of
non-stationarity and symmetry, then choose mother
wavelet combining with the properties of wavelet, such
as orthogonality, vanishing moments, regularity and
symmetry.

3 Numerical Simulations

Undamped architecture under non-stationary ran-
dom excitation is discussed in this paper. Our goal is to
identify the stiffness matrix by structural response un-
der the condition that the mass matrix of structure is
known. We validate the feasibility and rationality of the
above method. The following discussed is an ideal ar-

chitecture of a three-floor frame structure. The ideal ar-
chitecture is formed under the assumption that each of
the floors is perfectly rigid and braces are massless and
restricted to translation in a plane parallel to the floors,
and it has the following characteristics:

1) The mass center of each floor does not locate
in the principal axis of the structure;

2) The stiffnesses of x and y directions are K, and
K, respectively, and their values may be different for
each floor.

For the i-th (i =1,2,3) floor, the displacements in
x and y directions are x; and y, respectively. The corre-
sponding motion equation is

Mx(t) + Kx(1) =u(t) (10)

where x(7) ={x,(2),y,(0),x,(1), y,(1), x;(1), y; (1) }T
is a 6-dimensional displacement vector; M = diag(m,,
my, m,, m,, my, my); u(t) is non-stationary random ex-

. . . 11
citation; K is as follows'":

FK +K, 0 -K, 0 0 0 7
0 K +K, 0 K, 0 0
-K, 0 K +K. 0  -K_ 0
=l -K, 0 K +K, 0 -K,
0 0 “K, 0 K. 0
0 0 0 K, 0 K

Assume that white noise plus Ramp signal and pe-
riodic impulse excitation is used as non-stationary exci-
tation, where the mean of white noise is 0, and the vari-
ance is 100 N°; the slope of Ramp signal and the am-
plitude of periodic impulse excitation are 1 000 N, and
the sampling frequency is 1 000 Hz; simulation time is
30 s. Down sampling to 100 Hz, Fig. 1 shows the
structural response x, (). Obviously, it is non-station-
ary.
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Fig.1 Structural response under non-stationary excitation

After analyzing the response, we use “bior” and
“db” wavelets, respectively. We adopts the 3rd to the
16th scale wavelet coefficient processes after compa-
ring the energy to construct a new stationary signal.
Because big scale means low frequency and structural
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natural frequencies are generally small, we adopt the
16th scale wavelet coefficient process as a dependent
variable, and other scale wavelet coefficient processes
as independent variables in regression analysis to con-
struct y(b). After testing the stationarity of y(b), post-
multiplying y(b) by the 3rd floor response and taking

expectation we obtain a cross-correlation function (to
ensure that all of the modes are observed). Finally, the
method in section 1 is used to identify the stiffness ma-
trix. Tab. 1 shows the theoretical and computed values
when “db8” wavelet is used. The analogous result is
obtained with “bior” wavelet.

Tab.1 Theoretical and computed values of physical parameters of 3-floor frame structure

Theoretical value

Computed value

7
Floor M/(107kg) K./(10°GN-m ™) K,/(10°GN-m ™) K./(10°GN-m™) K,/(10°GN-m ™)

1 2.0 0.90 0.85 0. 864 40 0. 828 09

1.9 0.85 0.75 0.819 34 0.730 71

3 1.9 0.85 0.75 0.835 10 0.726 16
During simulation, we also adjust the slope of [3] Ueng Jinmin, Lin Chichang, Lin Paolung. System identifica-
Ramp and the amplitude of periodic impulse excitation tion of torsionally coupled buildings [J]. Computers and

time after time. The results indicate that when ampli- Structures, 2000,74(6): 667 —686.

[4] Bonato P, Ceravold R, de Stefano A, et al. Use of cross-

tude changes in a given range, the estimated value of
modal parameters hardly change. This suggests that the
new method is robust in identifying modal parameters.
In Ref. [12], we once presented a kind of modal
identification method based on wavelet transform.
Compared with this paper, the method in Ref. [12] has
two flaws. One is that we must test all scale wavelet
coefficient processes in order to choose stationary
ones, which increases estimation errors to some extent;
the other is that many wavelet coefficient processes can
be relatively stationary, so different choices may result
in the volatility of the estimator. This paper just over-
comes these problems by use of co-integration theory.

4 Conclusion

We can conclude from the above analysis that the
method of wavelet transform and co-integration theory
may identify the modal parameters of non-stationary
LTI system only through structural response, and if
mother wavelet is chosen as suitable, a highly precise
(error is less than 5% ) and robust estimator can be ac-
quired. We can also conclude that the method can ap-
ply to the situation of stationary excitation. It occurs to
us that we can identify mode directly according to
structural response whether or not the excitation is sta-
tionary or non-stationary.
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