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Quadratic integrability of solutions
based on a class of delayed systems

Ji Guojun

(School of Management, Xiamen University, Xiamen 361005, China)

Abstract: Some properties such as oscillation, stability, existence of periodic solutions and quadratic integrability
of solutions based on a class of second order nonlinear delayed systems are analyzed by using the V-function,
the Lyapunov functional or the Beuman-Bihari inequality, and some sufficient conditions based on those
properties are given. Finally, the conclusions are applied to over-voltage models based on three-phase
nonsynchronous closing of switches appearing in the power systems, the results in accord with the background
physical meaning are obtained. And all the conditions of the conclusions are easy to validate, so the conclusions
have definite theoretical meaning and are easy to apply in practice.
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In recent years, the solution characteristics of a class of second order nonlinear differential systems have been
studied, and a series of pleasing results have been devoted to problems such as oscillation, asymptotic stability and
stability, etc. Some results have been obtained by using Gronwall’ s inequality or its generalizations of this type'",
and some results have been obtained by using the Lyapunov functional'”’, analysis'”’ or the existence of periodic so-
lutions'”'. But, the problem related to some properties of the second order nonlinear functional differential system,
such as oscillation, stability, existence of periodic solutions and so on, has not been discussed in depth.

Let us consider the second order nonlinear functional differential systems as follows:

K1) +p(D X' (1) +q,(Dx(1) +qy(Dx(1=7) +8,(1, (1) +g,(t,x(t =7)) =f(1) (1)
where 7€ (0, ), fe C([t, -7,%),R),p(1),q,(t) e C([ty —7,%),R),i=1,2,and g, (2, x), g,(t,x,) e C([¢, -
7, %) xR, R), the initial function ¢(f) is continuous which is defined in [7, — 7, #,]; R denotes a real set, ¢ is the
time variable. Some results related to the boundary and the quadratic integrability of solutions of second order non-
linear differential systems with 7 =0 and g,(+) =0(i =1,2) can be found in Ref. [5]. In this paper, by using the
theoretical analysis, some solution characteristics of Eq. (1) can be obtained; and the V-function, the Lyapunov
functional and the Beuman-Bihari inequality are used. Some sufficient conditions are given. Finally, our conclusions
are applied to the over-voltage models in the power systems, and some results in accord with the physical meaning
are obtained.

First, we present the following assumption and the basic inequality.

Assumption Suppose that p(7), f(¢) are locally integrable on [, -7, ), ¢,(t) € C'([t, =7, ® ), R), and
| g, (t,x(1)) | <h, () [x(D) |, | g,(t,x(t 7)) | <h,(t) | x(t —7) |, where h,(t) e C([t, —7, %), R"), and there ex-
ist two nonnegative constants g,(i =1,2) such that \ h.(t) | < g

>

2
Basic inequality Assume that a >0, 5=0, then —ax’ +bx< —%xz +% forxeR".

Before stating the main results, the following lemmas are needed:
Lemma 1 (Beuman-Bihari inequality'®) Assume that v(7), p(¢), g(t) e ([#,, %), R"), and satisfy the fol-
t t
lowing inequality v(#) < v, +f p(s)v(s)ds +f q(s)v'(s)ds,t = t, ,wherevy, =0,y € (0,1] , then
fo fo

1

D v(r) < exp(fp(s)ds){v(‘)'y +(1 —y)j: q(u)exp(fu(y —1)p(s)ds)du}w for y € (0,1) and t=1,;
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2)v(1) < voexp(ft (p(s) +q(s))ds) for y =1 and t=1¢,.

Lemma 2"  Consider the functional differential system as follows:

x'(t) =F(x,), x,=x(t+0) -y<6<0;r=0 (2)
where F is a continuous vector function, and VY H, < H, there exists L(H,) >0 such that | F( d) \ <L(H,) for
Hd)” <H,. Assume that F(0) =0, there exists a continuous functional V(¢) satisfying the Lipschitz condition, and
that

1 W,(| $(0) \ ) <V(p) <W,( || $(0) ||),where W,(i=1,2) are the wedge functions;
2) V(4)(¢) =<0;

3) Let A ={¢:V, (¢) =0}, the maximal invariant set 2= {0} of the set A.

Then the zero solution of (2) is asymptotic stability.

Lemma 3'”  Consider the following functional differential system

x'=F(t,x,), x,=x(t+0) -7<0<0;r=0 (3)
and assume that

1) F(t+T, @) =F(t,p)(T=7>0), F is a continuous vector function, and ¥V M >0, then there exists a non-
negative constant L(M) >0 such that | F(t, ) | <L(M) for Hq;||sM;

def

2) There exists a continuous functional V(t, ¢): R x C"—R satisfying the Lipschitz condition, where C" = {¢
eC: | p(0) | =H);

3) There exist two continuous increasing functions a(s) >0, b(s) >0 for s=H, and a(s) —w (s— ), satisfy-
ing a( | ¢(0) |) <V(1,¢) <b(llpl;

4) There exists a continuous function w(s) >0 for S=H such that V'(7, ¢) 5, < —w( \ ©(0) BE

5) There exist five constants H|, «, 8, v, y such that b(H,) <a(a),b(a) <a(B), b(B) <a(v), b(v) <a(y),
where H, >H and vL(y) <H, —H.

Then for system (3) there exists a periodic solution x(¢) in the periodic 7.

1 Boundary Results without Delay

In this section, we consider the boundary and integrable in L’ of the solutions of Eq. (1) without delay, i. e.,
considering the case 7 =0 as follows:
x'(0) +p(0)x'(1) +q,(0)x(1) +g(x(1)) =f(1) (4)
where ¢(1) =q,(1) +q,(1), | g(t,x(1)) | <h,(t) | x|* ae[0,1]. We have the following theorem.
Theorem 1 Suppose that Eq. (4) satisfies
h, (1)

q,(0)

1) q,(neC(la,»),R"), q,(1), are locally integrable on [a, ) ;

2) There exists a continuous derivable function F(7) satisfying F(¢) >0, F'(t) =0, Q(t) :%(q'lF +2pq,F -

F'q,) >0;
3) F(1) g3 (1) Q7' (DA (0), (1) FP (1) Q7' (1) e La, »), where A’ (1) =[Q(q,F + Q) +
VO (q,F +0)° +4q,F Q°1/(20°).
Then there exists x(#) being a solution of Eq. (4) and such solutions bounded on [a, = ).
Proof Suppose that x(7) is a solution of Eq. (4) that is defined in [a, T](T< ).
Let us consider the V-function V() = F(¢) (x*(f) +[x'(#)]1%),te[a, T), then
dv
dr

=F'(xX +q,'x") +FI(~qiq;" =2pq; )x" =24,q, ' xx" =2gq; 'x" +2fq; 'x'] =
@
F'x* =2Fq,q; 'xx' =2Qq,x"> +2fFq,'x' -2gFq, 'x'
However, the basic inequality implies that —2Qq,'x"> +2 | f| Fg;' | x' | < - Qq;*x"> +fF°Q""'. This shows

that 2 | x | | x' | <./q, F'V(1), X <V(H)F".
Therefore, 2 | g | Fg;" | x' | <2h,Fg;" | x|*|x' | <h,g *F =" [V(r)] *. This implies that %‘: <F'¥ -
(4)

l+a

2Fq,q, " x' - Qq, X +fFQ 7 +hg TF V(1]
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Let E(t) =F'x’Fg,q, ' xx' — Qq; *x'*, then
E() =F'x* = 0q{[Ax" +¢,¢,FA "' Q7 'x]” + Qg 2 (A’ - DX + s FPA 207 '%° <
F/xz +q§F2A 72Q71x2 +Qq172(A2 _1)x72

This implies E(f) <(F' + @ FA Q0 ) (x +q,'x?) =(F'F ' +FEA Q0 ) V(1) i.e. ,‘(‘i—‘t/ <(F'F'+
(4)
l+a

FGA 720 HV(D +hlql'%Fl2J V2 +fF Q' integrating the above inequality from a to ¢, we have V(7) < k +
[ R V(s)ds + [ hg FFVEds, wherek = V(@) + [ fFQ™dt >0and R(s) = FF" +FgA"0" .
According to lemma 1, these imply the following results:

V(1) = exp(f;R(s)ds){kl?" 41 ;af;hlql_éFl;eXP(a2_1J':R(u)du)ds}lza _

2

>R 7 [ maitexs( ST Fga o au)as)

F(F ' (@exp( [ Fgia 0 ds) [k ™ 41

for any € [0, 1); and V(1) < kexp(f (R(s) + h]ql’%)ds) = kF(t)F_l(a)exp(f (FEAT 0™ + h]ql’%) ds) for
a=1.
By the conditions, we can know that V(1) F~'is bounded in [a, T),i.e., x(f) is bounded in [a, T). Apply-

ing the extended theorem of ordinary differential system solutions, therefore, x(¢) exists on [a, « ) and is bound-
ed. This completes the proof.

Theorem 2 Assume that Eq. (4) satisfies
1) g.(t) >0(i=1,2),p(t) >0,q,(t) >0,te[a, »);
2) There is a § >0 such that \q{ql'% | <6 <4,

3)

d, , 2 L L , _3 _lta , 3 L
G a ) b la laitpaia ey L faia e fatp T eLla, ).

Then all solutions of Eq. (4) are bounded on [a, « ) and integrated on L.

Proof Assume that x(7) is a solution of Eq. (4). Let us consider the V-function as follows: V(?) =./q, X

T dv 1, 1, L, r 3, -\ - 5
+qy?x" then " | =gl gy PxT —2g, Pxx —(7611 2q'y +2pq, ? | X" +2fq, 7 x" -28q, *x'.

4
The following proof process is similar to that of theorem 1.

2 Oscillatory Results

In this section, we consider the oscillation of Eq. (1). Let y(#) =x'(¢), then the equivalent system of Eq. (1)
is represented as
x'(1) =y(1)
V(1) =f(1) =p(D¥(D) =g, (Dx(D) =g, (Dx(t=7) - g, (1, x(D) = g, (1, x(z—m}
We have the following theorems.
Theorem 3 Assume that
1) p(D), q(D) € CL1, -7, %), R"), g,(1, ) signx=0(i = 1,2);
2) There exist two continuous functions F(t), G(t) such that f(t) = F'(t) =G"(t), and F(¢) is an oscillatory
function;

(3)

3) fm [q,()G,(s) +q,(s)G, (s —7) +p(s)F,(s)]ds = o ,where T > 7,and F, (t) = max(0, F(r)),
T

F_(t) =max(0, —F(?)) .

Then all solutions of Eq. (5) are oscillatory.

Proof Assume that (x(#),y(f))is an eventually positive solution of Eq. (5), then there exists 7, > 7 such
that x(t) >0, x(t -7) >0, y(#) >0, y(t-7) >0 for any > T,.

Hence [y(1) - F(1)]" = —g,(t,x(1) - g,(t,x(t=7)) = q,(D (1) = go(Nx(t =7) = p(H)y() <O for any 1
>T,;i.e.,x(t) is increasing and y(#) — F(¢) is decreasing. Therefore, two cases may occur for y(#) — F(1):

1) There exists T, > T, such that y(¢) — F(¢) <0 for ¢t >T,. However, F(¢) is an oscillatory function; there-



Quadratic integrability of solutions based on a class of delayed systems 633

fore, this is impossible.
2) There exists T; > T, such that y(t) — F(¢) >0 for t>T,. Then y(¢) >F,(¢) and lim [y(?) -F(¢)] =k=
1— +

0, k is a constant. However, x'(#) =y(f) > F(t) =G'(¢) for t>T,,i.e., [x(#) —G(#)]' >0. Similar to the above
proof, this implies that x(#) > G, (). Then, by using the following inequality —[y(?) - F(7)]' =g,(t, x(1)) +
&(t,x(t-7)) +q,(Dx(1) +q,()x(1—-7) +p()y(1) >q, ()G, (1) +q, ()G, (t—7) +p() F, (1), and in-

tegrating the above inequality from 7> T, + 7 to £ > T implies that y(T) — F(T) —y(t) +F(t) >f [q,(s)G, ()
T
+¢,(8)G, (s —7) +p(s)F,(s)]ds—+ o (t— + o) . This is contradictory to lim [y(?) - F(#)] =k=0;1i.e.,

system (1) does not contain any eventually positive solutions, nor any eventually negative solutions for the same
reason. This completes our proof.

Theorem 4 Assume that

1) p(0),q.(1) e C([1y -7, %), R7), g,(£,x) signx=0(i =1,2);

2) There exist two continuous functions F(7), G(¢) such that f(#) = F'(t) = G"(t), and there exist two con-
stants G;(i =1, 2) such that G, <G(¢) <G,, and there exist two sequences {t,}, {¢,}such that )lilg G(t,) =G

limG(t,) =G,

3) The solutions of the following linear systems z"(¢) +¢q,(1)z(t) +q,()z(t —7) = —q, () G(t) —q,(1) G(¢
-7) +(q,(1) +¢,(1))G,(i=1,2) are oscillatory.

Then all the solutions of Eq. (5) are oscillatory.

Proof The proof is similar to that of theorem 3.

3 Stability and Existence of Periodic Solutions

In this section, the stability and the existence of the periodic solutions of Eq. (1) are considered. The equiv-
alent system of Eq. (5) can be denoted as

x'(1) =y(1)
y'(0) =f() =p()y(1) =[q,(1) +q,()]x(1) =g, (1, x(1)) + g (t+7,x(1)) +
f,, [d(gZX) +g,(s +7, x(S))]y(S)ds 6)

d
where g (u,v) = % We can conclude some results as follows.

Theorem 5  Assume that f( ) =0, and

1) q.(1) € C'([a, »),R"), and there exist two nonnegative constants q,;i(i=1,2) such that g;(#) < - q,,;(i
=1,2);

2) p(t) e C([a, »),R), and there exists a nonnegative constant p such that p(t) =p;

3) g;(i=1,2) are continuous derivable functions, and there exists a nonnegative constant g, such that
| g, (1, x(1) +g,(t+7,x(0) | <g,

d(g,x)

4) There exists a nonnegative constant / such that dr

+g.(t,x(0)) | <L

[gé —P(qo1 +40) ] ’
412(%1 +qp)
Proof Let us choose the continuous Lyapunov function as follows: V(x,,y,) =[q,(f) +g,(H]x" +y" +

Then the zero solutions of Eq. (6) are stable for 0<7" < and p,(qy +90) — & >0.

0 t
k f f y°(9)dsdd , where k is a parameter that is determined later.

Ve | =2 [ p0r0 g am) +et +rxo) + ] [CE) L (oo o] ¢
K10 =y +9)1ds +21g((0) +@i(0] <=2py" +28 | xy| = (du +u)¥’ +2lf, [y(0) [ y(s) |ds +

0
kf [yz(t) —yz(t +5)]ds S—2py2 +g7y +k7-y +—l
. (g0 *+490) k

Let us choose the parameter k satisfying
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P(qo +qp) _gg - «/[g(z) - p(qy, +QO2)]2 _41272(%)1 +%2)2
27(q0 + 900)

P(qo + qoa) _g(z) + «/[g(z) -p(qy + %2)]2 _4127'2(%1 +%2)2
27(q0 + 900)

Sk<

Therefore, V'(x,,y,) | o= - py* <0, and Eq. (6) and V'(x,,y,) =0 imply that x =y =0;1i. e., the condi-
(6

tions of lemma 2 are satisfied. This completes our proof.
For the periodic solutions existence of Eq. (6), we have the following results.
Theorem 6 Assume that
1) p(?) is a continuous function in the period 7, and there exists a nonnegative constant p such that p(f) > p;
2) q.(t) e C'([a, »),R), and there exist two nonnegative constants g,,(i =1,2) such that g/(f) < — ¢, (i =1,

2);
3) f(1) is the continuous function in the period 7, and there exists a nonnegative constant f; such that \ f(H) <
Jos
4) g,(t,x(1)), g, (t, x(t —7)) are the continuous derivable functions and satisfy the Lipschitz condition, and
d(g,x
there exist two nonnegative constants /, g, such that | g, (¢, x(1)) +g (t+7,x(1)) | <g, | x|, (zi ) +g,(t,

x(t-1))

Then there is a positive constant 7, when 0<<7<r7,, for Eq. (6) there exists a periodic solution in the period

Proof Let us choose the continuous Lyapunov function as follows:
l 0 t 0 t
W(x,y) =(q,(1) +q,())x* +y +Zf 7J[Hyz(g)dsd0 +IJ7JHS | y(@) |dsdé
The following proof process is similar to that of theorem 5.
4 Quadratic Integrability

In this section, we consider the quadratic integrability of solutions of the second order nonlinear functional dif-
ferential system (1). We have the following results.

Theorem 7 Assume that
(t,x(t-1)) | <

1) There exist two nonnegative constants g,(i =1,2) such that \ g, (t,x(1)) \ <g, \
& ‘x(t_
2) 611(1) :qu(t) +q02(t)vq01(t) Ecl[to -7, w)’qu(t) >Os qu(t)’ 612(1),17(1) f(t) Ec[to -7, °°);

-2

3) There exists a continuous derivable function F(f) >0, F'(t) =0 and Q(1) = Fqy,’q}, +2Fpqy' —F'qy' >0,
f [F qm < w j“ Fgy (qn +8)

H(H) = 20¢F + 20q,° F (g, + ¢, )° such that on’ dt < oo,
to—1 o=

f“ Fqy' (g, +q2)2dt < e . where A%(1 _1+Hr 075" +4/(1 +HT"Q'1610'11)2+16F2Q'27'1qo}3(q32 +81)

fh—1 T ’ 2 '

=0( W qo (1)), >,

Then the solutions of Eq. (1) satisfy that lx() | =0(1),
Proof Let us consider the V-function as follows:

V(1) = F(t) (X (1) +qy () (x' (D)%) +f_ jiﬂxz(e - 7)deds

then

0
((iT‘t/ = F'(x +q01l 7y 4+ F(2xx' +2q01l "x" qo_lzq(’nx’z) +f X(t+s —1)ds —1x*(t —7) =
(D -

-2 -1 _

F'x’ +(F%1 01QO1)3C,2 +2Fxx" +2Fqy x'[f —px’ = (qo +qu)x —qx(t —7) —
0

gi(1.x(0) =g (tx(t =T)] + [ Xt 45 =n)ds =72t =7) = F¥' +(Flay' - Fa;’qi, -

-7

2Fpqy )x” +2fFqy X' —2Fqy q,x'x(t —7) —2Fqy x'g,(t,x(1)) —2Fqy x'g,(t,x(t —=7)) —2Fqy qpxx’ +
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0

f X(t+s —1)ds —7x*(t —7) < F'x* +(F'q0]l —qu]zq(’n —2qu(;11)x'2 +2qu(;,lx' —2Fq0]1q02xx' +

0
2Fq(;,1g, | xx" | —=7x*(t —17) +2q(;lF(g2 +q,) | xx(t —7) | +f X(t+s —71)ds <
%_12F2(gz +CI2)2

(F’+
1-

)x2 +(F'ay = Fqs'qq —2Fpge ) x™ +2fFqy x' =2Fqq) qoxx’ +
0
2Fq; g, | xx' | +f X(t +s —71)ds

T

By the basic inequality, we have

2 2 2 2F2 2 0
dv < (F’ +q0]F2(q—2+gz))xz - Qx’2 +& —2Fq, quxx' +2Fq; g, | xx’ | +j X(t +s —71)ds
dr | oy T 2 0 -
—2F2 + 2
Let E(¢) = (F’ +qm(%gZ))x2 —Fqy'quxx’' +2Fqy' g, | xx' | —%x’z, and consider that
T
242 2 -1 2 -1 2
A Q0 F (g +8) > O . 2Fqq qp o , 2Fqy &,
E(t)—(F +—T )x 2(/\x +7)\Q x) 2()\\x\—7)‘Q \x\)
2(/\2 —l)x/z +4F2‘1012(‘]§; +gf)xzS F +‘]0]2F2(‘12 +gz)2 +4FZQO]2(‘]02: +812) 2 +Q(A2 _l)xlz
2 20\ T 20\ 2
72F2 + 2 4F2 -2 2+ 2
where A(?) is a function which is determined as: F' + 9o F (4 + ) + o 2(3)\22 &) = ng(/\2 —1). Then,
T
1 "'HQ_ZCI(J_llT_l + \/(1 +HQ_ZCI0_117'_1)2 +16F27_1Q_ZQ()_|3(‘]022 +g12)

we have \*(1) =

> 1, this implies that

2
AF? 02 ( o> 2 2 AFa-2( a2 2
E(t)$(i+ 9o (%22+gl ))()C2 +L)$( H . o1 (61022+g1 ))V(t)
270 201 do) \27QF 201
2, 2 2 2 F2 -2 0
Therefore, %‘: < ( H_ 4P (q°22+g1))V(t) +M +f X(t+s —71)ds.
m 27QF 201 0 -

Integrating this inequality from a to ¢, we have

¢ 2fFqy ‘ H  4Fg(dn +8) o
V(D) < V(t, —7) + ————ds + ( + oL 10 ! )Vsds+ X(t +s —7)dds <
R |, 50 o (9ds +[ [ 2 )

tgy-1t7 -1
t -2 2 2
M +f ( H_ 4Fq (%22"' gl))v(s)ds

to-7 2TQF ZQA

« 2FPF* g2 0 =
where M = V(t, — 1) +J Mdr +J dsf xX(t +s —7)dr > 0is a constant.
-7 Q -7 -7
» 2 2 2, 2 2
The Gronwall’ s inequality implies that V(1) < M &exp{ f [qu' (& +4,) +4F%l (61022+ 8) ] dt} .
F(ty —7) 01 T 20\

This completes our proof by the conditions and the V-function.

In the case of F(#) =1 or F(¢) =g, (1), we have the following results.

Corollary 1  Assume that

1) There exist two nonnegative constants g, (i = 1, 2) such that \ g (t, x(t1)) | < g | x(t) |,

lg: (1, x(1-7)) | <g [x(1-7) [

2) Let Q,(1) :‘10]2‘161 "’217‘1071l >0, H,(1) :2Q15]0712(gz +‘Iz)2 satisfy that
“ @dt < o, J'w ‘]()712(‘1022 jng)dt <, fm Q(;lz(gz +q2)2dt < o
o7 Q1 o7 Ql)\

+H17_1Q1_2%_11 + «/(1 "'HlT_lQl_l%_ll)2 +4Q1_27'_1%_13(qu +gT)

) .
Then the solutions of Eq. (1) satisfy that lx(t) | =0(1), | x'(¢) | =0( Vo (1)), t—o.
Corollary 2 Assume that

1) There exists a nonnegative constant g, such that | g(¢,x(t1-7)) | <g, | x(t-7) | ;

to-1 T

1
where A\*(f) =

2) Let Q, (1) 2510]151(31 +2p - qq CIO]I >0, H, (1) =20,7qy +20,(g, + 612)2 such thatf gdt < o,
2

th-7
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j” o *8 1+H7 0 gy + /(L HT 070 4407 gy (q” +81°)
e 0N’ ’

Then the solutions of Eq. (1) satisfy that | x() | =O(1), =0( . /qy (1)), t—.

Theorem 8  Assume that

1) There exist two nonnegative constants g, (i = 1, 2) such that | g, (1, x (1)) | < g | x (1)
‘gz(tax(t_T)) ‘ =& ‘x([_

- -1 2
dt<w’j do (& +4,)

T

dr < « ,where ()

)

- 3 1 .
2) Let Q =%CI(;1 2qi +2q02p -27q,' (g, +¢,)°, and there exists a constant § such that Q<8 <4, satisfying

that f{O_T(QJm ZQZH Jds < e, jlo_quzdt <w . and f,(,_T(‘LQ

+PQ +4%1 902 +2‘I01 qo + 2Qg1%|

9o q01 244 +4%1p
22 20g, +2 = +2
Q(g2 +q2) 4(g, +q2) } le %1 q01 Q(%l qun) -

Then the solutions x(#) of Eq. (1) satisfy x(f) e L’[t, -7, %) NL™[t, -7, ).
0 t+s
Proof Let us consider the V-function as: V(1) = ,/q, (1) (X’(1) +qqg (D (x'(1))?) +L2f J X (6 —7)deds,
T -7t

404, ~20quast ) dr < f0r0<7-<mln{

and we can deduce

m‘._.

~ 1~ ~
dv 0. - 1 - 08,407 _43Q Qg q Q
av < ]LQ 1 o, 1901 90 902901 ) N — =<
dr | 4 T 490 90 t o 401 9o + ) 4 V() 2 (xx) " +
~ -1
0 ‘fz ‘ 2 ‘fz ‘ o | 1 ’ _
2q,, * 0 " sz—rx ( +5 —m)ds
Integrating the above inequality, we have
S T O L ~ , -
< t p7Q | leqmz _ q3 Q0 _ Q%z%lz) _Q ' d 0
V() <K + th_T( + g0 g + S0 dn A 5 V(s)ds S+ J’to_fxx ds( 5 )ds

where

K =Vt -7y + 25 "D —mx(ty - 1) +f°° (Q‘f‘ 21f ‘)ds+ f f ©(s +6 —r)dods

2 -\ 24y Q%l -7
is a positive constant. The conditions imply that
- FE T v
0 p;Q 2 1 L, 0890 Q44 Q%z%lz)
V() <K + V(t) + 4j10_7 Oy s)ds +jto_7( G il by = V() ds
i.e.,
4K 1 dD 04 —20aat
V(1) < . ( - +pQ +4%1 902 +2CI01 9o +2Qg1%1 —40q8 —2040 90 )V(s)ds
4 -85 4-5),.\|ds

Gronwall’ s inequality implies that

4K
V(1) $4 _aexp{

m‘._.

dg ~ - 1, I
‘7?‘ +pQ +4CI0115102 +Z%IIQO1 +208,9,° _4QCI01 2Q%2q0

Jas}

However, xz(t)sqoﬁvu),thenj (1) de sf G V(nde < j Mg;7dt < o ,ie.,x(t) e [*[1, -,

-7 n-7 -1
%). Considering that g}, >0, thus gy, (£) =gy (1, = 7) >0(t=1, - ), and | x(1) | < J/V(Dg? (1) <

]
/\/Mq()_li(t() _T)(tBIU -71),i.e.,x(1) ELw[fo -7,0).

Therefore, x(t) € L’[t, —7, %) NL* [, —7, % ). This completes the proof.

4 —6J) -
By the conditions, there exists a positive constant M such that V(1) <M (t=t¢, - 7).

© ©

S Application to Power Systems

Closing of switches often occurs in power systems. An ideal closing process is often considered that switches of
three closed phases are synchronous, some results have been obtained under such circumstances. However, because
of the manufacture or other causes, the closing of switches is often nonsynchronous in power systems. For example,
closing on phase B and C contractors may occur later than that of A, and their times of delay may be 7, or other
nonsynchronous conditions. Operational experiences have indicated that switch over-voltage caused by nonsynchro-
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nous closing is higher than that caused by synchronous closing. Generally, the former is about 20% to 39% higher
than the latter under ordinary circumstances, therefore, the former is of risk. In order to find the reason why the
switching over-voltage caused by the former is of higher over-voltage, some laboratory tests and computer-aided
analyses have been undertaken'”' . Ferromagnetic resonance over-voltage is a lasting nonlinear resonance phenome-
non that appears in tank circuits with the action of iron core inductance saturation magnetization. The resonance
formed in circuits is closely related to three phases. It is difficult to study the system’s complex mechanism (such
as theory, applications, etc) . However, as linearizing mathematical models are used, the analysis can be dealt with by
the methods of linear superposition of the effects of successive three-phase closing processes (e. g., I. A. Wright has
given the unsimplified reason and arranged them in a line to prove it). Germand first set up the three-phase nonlin-
ear mathematical model in power systems in 1975. Even the model is incomprehensive as it is now, but it shows
that the discussion of the resonance mechanism of the switching over-voltage must be in high dimensional space.
Generally, the nonsynchronous closing of a three-phase process is a time-delay phenomenon in nature. On the other
hand, there are some inductive elements with cores in power systems. Due to the operation or other causes cores
tend to saturate and inductors with cores may become nonlinear. It is clear that in order to further study the mecha-
nism of over-voltage caused by three-phase nonsynchronous closing of switches, a nonlinear mathematical model
considering the time-delay phenomenon must be considered, and then the effects of time-delay on the system are an-
alyzed. According to the above discussion, to study the mechanism of higher over-voltage caused by the nonsyn-
chronous closing of switches in power systems, a nonlinear time-delay mathematical model must be set up.

A kind of typical circuit can be obtained and a closing case is considered. That is, phase A closed, and the oth-
er phases B and C closed after time-delays 7,, 7,, respectively, then the dimensionless mathematical model based on
the mathematical model of three-phase synchronous closing and considered influences of time-delay are given

as'™

(1) +(k +a +nbd! ™ (D) d,(1) +k(ad,(1) +bd! () +W =Ecos[t —(i-1) %ﬂ] (7

where i=1,2,3; W =ga| ¥ (0 + X bt —wr) | +b[ 3 1(n) + X ¢t ~wr)) | .and k.a.b,w. E.7,

(i=1,2) are all positive constants, and n=3 is an odd integral number, and 0 < k + a<1,0 <b<<1. We consider the
case i =1, then Eq. (7) becomes
(1) +(k +a +nbx"" ())x(t) +(k +pB)(ax(t) +bx"(t)) +Bax(t —wr) +Bbx"(t —wr) = Ecost (8)
Considering the physical meaning, the solutions x(¢) of Eq. (7) are bounded. We rewrite the coefficients of Eq. (8)
as
p() = (k +a +nbx""' (1)) =k +a, qu(H) =1, qu(t) =(k+B)a -, g, =pa
g (t,x(t —wr)) = (k +B)bx"(1), g(t,x(t —wr)) =Bbx"(t —wr), f(t) = Ecost }
Then g, () >0, go, (1) =2t >0(t [0, »)), and there exists a constant L such that | x(f) | <L, satisfying that
| g(t,x(t-wr)) | <BPL"™' | x(t -wr) |, and
Q,(1) =2t +2t (k+a+nbx""'(£)) >2t 7 +2(k+a)t > >0
fag’ E’cos’t 90 (8" +4,") B+ (k+pial” 4o (8 +4,)° _(BOL"" +pa)’
0, 2t+2(k+a)t’ o 2t +2(k+a)t T Tt
Therefore, all conditions of corollary 1 hold, i. e., the following conclusion satisfies.
Theorem 9 All the solutions x(#) of Eq. (8) satisfy lx(0) | =0(1), | x'(1) | =0(1), +—0; i.e.,all solu-
tions ¢,(#) (i =1,2,3) of the over-voltage model (8) satisfy \ b, (1) | =0(1), bl (1) | =0(1), > (i=1,2,3).
Certainly, choosing different g, (#) can obtain different results.

Let gy (1) =, 1 € [ 1, — wr, ) (1, —wr >0), then gy, (1) = (k +B)a - £, and Q:% S i (k+a+

nbx"™") —27-t'3,82(a +bL"")*. Then, it is easy to know that there exists a ¢* such that 0 <Q<4 fort>t". How-

~ o 3
, t_%dl‘ < »,h Q‘fz ‘ 2N‘fz ‘ dr < 1 w1 n-l [ Fos’tdt
ever f o, hence ftow( 4q, + 0o ) Jx(,w[ 8t 2 4 2t >(k +a +nbL"™) +—k +a] cos

- ~ ., SO S e 1
+PQ+4%11%2 +2%11%1 +208,q90° —40q4 _2Q‘]025]012)dt = f [t -4 +8(k +a +

1h—wT

th—wt

<oo,andfc ((iQ
P
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nbL'™)dt < f r7dr < o , for k +a +nbL""" <L. It is easy to see the following inequality holding for the suffi-

1h—wt 2

1 1
“Tgl 4 dar
cient small time-delay 7,0 < 7<min| = To QoG T790P

- i -
L
0(g, +6]2)2’ 4(g, +q2)2 ]’2le +2¢0,> g0 Z0(qo1 +2q,) . Then we have

the following conclusions.

Theorem 10 All the solutions of Eq. (8) satisfy x(7) e L*[ ty—7,%)NL"[t, -7, ), 1. e.,all solutions
¢ (1) (i=1,2,3) of the over-voltage model (8) satisfy that ¢;(?) el’[t,—wr, ®) NL”[t, —wr, ®)(i=1,2,3).

Similarly, we have

Theorem 11 There exist oscillatory solutions and periodic solutions for the over-voltage model (7) under
some conditions.
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