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Abstract: L( s, t)-labeling is a variation of graph coloring which is motivated by a special kind of the channel

assignment problem. Let s and ¢ be any two nonnegative integers. An L (s, t)-labeling of a graph G is an

assignment of integers to the vertices of G such that adjacent vertices receive integers which differ by at least s,

and vertices that are at distance of two receive integers which differ by at least 7. Given an L(s, t)-labeling f of
a graph G, the L(s, t) edge span of f, B,(G, f) = max{ \f( u) —f(v) \: (u,v) e E(G)} is defined. The L(s, t)
edge span of G, B,(G),is minB,,(G,f), where the minimum runs over all L(s, #)-labelings f of G. Let T be any
tree with a maximum degree of A=2. It is proved that if 2s=¢=0, then 8,(T) =( | A/2 | —1)t+s; if 0<2s
<t and A is even, then B8,(T) = [(A-1)t/2 ]; and if 0<<2s <t and A is odd, then B (T) =(A-1)t/2 +5.
Thus, the L(s, t) edge spans of the Cartesian product of two paths and of the square lattice are completely

determined.
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L(2, 1)-labeling was first introduced by Griggs
and Yeh'" as a variation of the channel assignment
problem in the radio system formulated as a graph col-
oring problem by Hale'” . Suppose that a number of
transmitters or stations are given. We ought to assign a
channel to each of the given transmitters or stations. In
order to avoid interference, “close” transmitters must
receive different channels, and channels for “very
close” transmitters are at least two apart. We can con-
struct an interference graph for this problem. The trans-
mitters are represented by the vertices of a graph, two
vertices are “very close” if they are adjacent in the
graph and “close” if they are of distance two in the
graph. And so a feasible channel assignment is corre-
sponding to an L (2, 1)-labeling of the interference
graph, which is a special case of L(s, f)-labeling of the
graph defined below.

Let s and ¢ be any two nonnegative integers. Giv-
en a graph G =(V(G), E(G)), an L(s, t)-labeling of G
is a function f from V (G) to integers such that
|f(u) -f(v) | = s if u and v are adjacent and
| f(u) —f(v) | =t if u and v are at distance 2. The inte-
gers assigned to vertices are called labels. The span of f
is the difference between the largest and the smallest
labels used by f. The minimum span over all L(s, t)-la-
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belings of G, denoted by A ,(G), is called the L(s, ¢)-
labeling number of G. The L(s, t)-labeling numbers of
graphs have been investigated in many papers, see
Refs. [3 —5]. For surveys on this topic, we refer read-
ers to Refs. [6 —7].

Let G be a graph. Suppose that f is an L(s, f)-la-
beling of G. We define the L(s, t) edge span of f, de-
noted by B, (G, /), to be the value max{|f(x) —f(y) |:
xy e E(G)}. The L(s,t) edge span of G, denoted by
B, (G),is min B,(G,f), where the minimum runs over
all L(s, ¢)-labelings f of G.If s =t =0, then B,(G) =0
for any graph G. So we assume throughout this paper
that at least one of s and ¢ is positive. Obviously,
B, (G) =s for any graph G with at least one edge. Also
it is easy to see that 8,(G) <A ,(G) for any graph G.
The equality may hold for some graphs. For example,
B,(G) =A,(G) =(|V(G)| -=1) s for all complete
graphs G. For many graphs G, 8,,(G) will be much less
than A,(G). Note that if H is an induced subgraph of
G, then the restriction of any L(s, t)-labeling of a
graph G on its subgraph H is an L(s, ) -labeling of H.
Therefore, if H is an induced subgraph of G, then 83,
(H) <B,,(G). It is worth pointing out that this may not
be true when s is less than ¢ and H is not an induced
subgraph of G.

The L(2,1) edge spans of graphs were first intro-
duced by Yeh in Ref. [8]. The author determined the
L(2,1) edge spans of cycles, trees, complete k-partite
graphs and investigated the L(2, 1) edge spans of trian-
gular lattice and square lattice. Feng and Song studied

the L(d, 1) edge spans of several classes of graphs'’.
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L(s,t) edge spans of graphs have not been inves-
tigated before. In this paper, we study the L(s, t) edge
spans of graphs. Let T be any tree with a maximum de-
gree of A=2. We show that, if 2s=¢=0, then B,(T)
=([ A2 ] =1)t+s;if 0<2s <t and A is even,
then B,(T) = [ (A-1)t/2 | ; and if 0<2s < and A
is odd, then B,(7T) =(A -1)t/2 +s. We also com-
pletely determine the L(s, ) edge spans of the Carte-
sian products of two paths and of the square lattice.
Our results generalize the results in Refs. [§ —9].

Note that the labels used by an L(s, t)-labeling
may be negative or nonnegative. And s may be less
than or greater than or equal to ¢. The graphs we con-
sidered in this paper are simple and finite except that
the square lattice is an infinite graph.

1 L(s,t) Edge Span of a Tree

Let T be any tree with maximum degree A. If A =
1 then T is the complete graph K, and we clearly have
B,(K,) =s. Thus we assume that A =2. Let f be an
L(s,t)-labeling of a graph G. For any subset S of
V(G), we denote by f(S) the label set {f(v) lveS).

Theorem 1 Let 7 be a tree with the maximum
degree A=2, then

TA7 J1)res s> =0
2 2

B (T) = (@W O$s<2L,Ais even
A-1 t .
> t+s 0$s<2,A is odd

Proof Since each tree with maximum degree A
is a subgraph of some tree with degree set {1,A}, w. 1.
0. g.,we may assume that each vertex of T has degree
A or 1. We split the proof of the theorem into three ca-
ses.

Casel 2s=t

Letm=( | A/2 | —1)t+s. We prove B.(T) =
m by giving an L(s, f) -labeling of T with edge span m
and by showing that 8, (K, ,) =m. For any integer y
(negative or nonnegative), we define

L ={y-s-([ A2 ] -1-it|lieZand

o<i< [ A2 ] -1}U
{y+s+(i- [ A2 ] -Dt|ieZand
[ A2 ] +1<i<A)

We define an L(s, t)-labeling f of T as follows:

1) Choose a vertex v, of T of degree A. Let f(v,)
=m and fAN(v,)) =L,

2) If v is a vertex of maximum degree such that v
and exactly one of its neighbors u are labeled, then
give the other unlabeled A —1 neighbors of v the label

set Ly, \{f(u) }. (It is easy to check that f(u) e L,,,.)
If no such vertex exists, then all vertices of T are la-
beled and the labeling is completed.

It is not difficult to verify that fis an L(s, ¢) -labe-
ling of T and the L(s, t) edge span of f is m. Thus,
B.(T) <m.

We now show that 8, (K, ,) =m. Let v, be the
root of K, ,,and let N(v,) ={v,, v,, ..., v, }. Suppose
to the contrary that 8,(K, ,) <m. Let f be an L(s, 1)-
labeling of T with 8,(G, f) <m. Then we shall obtain
contradictions. Suppose the minimum label used by f is
0 and the maximum label is M. If f(v,) =0, then
B, (G, =max{f(v):i=1,2, .., Al=s+(A-1)t>
m: a contradiction. Thus, f(v,) #0. Symmetrically, f
(vy) #M. W. 1. 0. g., we may assume that f(v,) =0,
then f(v,) =s. Let f(v,) =s +x with x=0. Since B,
(G, f) < m, we have f(v,) = s + x < m =
(lA2] -1t+sand sox<([A2] -1t
Therefore, at most | A/2 | -1 neighbors of v, have
labels in [0, x]. It follows that at least | A/2 | +1
vertices have labels in [2s +x, M]. This implies that M
~(2s+x)= | A2 | . Then B,(G,f) =M — (s +x)
=s+ | A2 | t=s+( | A72 | -1)t=m, thus con-
tradicting the assumption that 8, (G, f) <m.

Case 2 2s<tand A(=3) is odd.

We first show that 8,(7T) <(A - 1)t/ 2 +s. 1t suf-
fices to give an L(s, t)-labeling of T with its L(s, 1)
edge span (A —1)t/2 +s. For any integer y, we define

L ={y-s-it|i=0,1,2,...,(A-1)/2}U

{y-s+it]i=1,2,...,(A-1)/2}

L ={y+s-it|i=0,1,2,...,(A-1)/2}U

y+s+it]i=1,2,...,(A-1)/2}

Clearly \L). | = \L’y | =A. We define an L(s, 1)-
labeling f of T as follows:

1) Choose a vertex v, in V(T) of degree A. Let
S(ve) =(A-1)1/2 +5,and f(N(v,)) =L_f(v0) .

2) Find a vertex v of the maximum degree such
that v and exactly one of its neighbor vertices u are la-
beled. If d(v, v,) is odd, then give N(v) \{u} the label
set L'y \{f(u)}. (It is easy to see that f(u) e L'y, .)
If d(v,v,) is even, then give N(v) \{u} the label set
Ly, \{f(u) }. (Also it is easy to see that flu) e Ly, .)
If no such vertex exists, then all vertices of T are la-
beled and the labeling is completed.

It is not difficult to verify that fis an L(s, ¢) -labe-
ling and its L(s, ) edge span is (A —1)#/2 +s. There-
fore, B, (1) <(A-1)t/2 +5.

We now show that 8,(K, ,) =(A -1)#/2 +5. Let
the root of K, , be v, and let N(vy) ={v,, v, ..., v, }.
Suppose to the contrary that B,(K, ,) <(A-1)t/2 +s.
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Let f be an L(s, t)-labeling with its L(s, t) edge span
less than (A — 1) /2 + s. We shall derive contradic-
tions. Suppose the minimum label used by f is 0 and
the maximum label is M. If f(v,) =0, then B,(G,f) =
M=s+(A-1)t>(A-1)t/2 +s: a contradiction.
Thus, f(v,) #0. Symmetrically, f(v,) #M.W.l. 0. g.,
assume f(v,) =0. Then f(v,) =s. Suppose f(v,) =5 +x
(x=0). Since we assume B,(G,f) <(A-1)t/2 +s,s
+x <(A-1)t/2 +s and so x < (A —1)#/2. Then there
are at most (A —1)/2 neighbor vertices of v, with la-
bels in [0, x]. It follows that there are at least (A +1)/
2 neighbors of v, with labels in [2s + x, M]. This im-
plies that M — (25 +x) =(A —1)t/2; that is, M — (s +
x)=(A -1)t/2 + s, contradicting the assumption that
B.(G. <(A-1)t/2 +s.

Case3 2s<rand A is even.

We first show that B8, (T) < [ (A -1)#/2 | . Let
m=|(A-1Dt2 ] andm, = [ (A-1)t/2 | . For
any integer y, define L, = {y -m, +it i=0,1,...,A -
1} and L) ={y-m, +it| i=0,1,...,A -1}. Note that
it is not difficult to verify |y —(y —m, +it) | =s for k
=1,2 and i =0, 1, ...,A - 1. Using a similar process as
in the proof of case 2, we can obtain an L(s, t) -labeling
of T with its L(s, t) edge span m,. Thus, B,(T) <m,.
We also can prove §,,(K; ,) =m, by using the similar
arguments as in the proof of case 2. This completes the
proof of theorem 1.

2 L(s,t) Edge Span of the Product of Two
Paths

We now turn to the Cartesian product of two paths
and the square lattice. Let P, be the path on n vertices.
Given two positive integers m and n, the Cartesian
product of two paths P,, and P,, denoted by P, x P,,
has vertex set {(i,j) |0<ism-1,0<j<n-1}. Two
vertices (i,,7,) and (i,,j,) are adjacent if |i, —i,]| +
|j, =J, | =1. The square lattice, denoted by (7, has ver-
tex set Z° and any two vertices are adjacent if the Eu-
clidean distance between them is 1.

Theorem 2 For any two integers m and n with
m,n=3,

s+t if 2s=t
B.(P, xP,) =B,(0) = (%1 s <t
and B,(P, xP,) =s +1t for n=2.

Proof Let G =P, xP,. Suppose m, n=2. Let f
be any L(s, t)-labeling of G. Clearly G contains a 4-
cycle, say, C = vyv,v,v;. W. 1. 0. g., suppose f(v,) =
min{f(v,) |i=0,1,2,3}. Then max {f(v,), f(v;)} =
f(vy) +s +t. It follows that B, (G, f) =s + t. Hence,

B, (G)=s +1.

We now show that if 2s=7 then B8,,(G) <s +1. Let
f: V(G)—Z be defined as f(i,j) =si + (s +1)j, where
f(ij) stands for f((i, ). Suppose (i,,j,) and (iy.j,)
are any two vertices of G. If d((i,,j,), (i,,j,)) =1,
then |i, —i,| =1 and j, =j,, or i, =i, and |j, —j,| =
1. In both cases, we have |f(i,,j,) —f(iy,),) | =s.
If d((iy.j)), (iy.jy)) =2, then i, —i,| =1=1[j, -},
or |i, —i,| =2 and j, =j,, or i, =i, and |j, —j, | =2.

>

In each case, we have \f(il,jl) - iy, Jy) | =1. So fis
an L(s, f)-labeling of G. Also, it is easy to see that the
L(s, 1) edge span of fis s +¢. This implies that 8,,(G)
=s+1if 2s=t.
We now turn to the case 2s <t. If m, n=3, then
K, , is an induced subgraph of G. It follows from theo-
rem 1 that 8,(G) =B, (K, ,) = [ 3t/2 | . On the other
hand, let f: V(G)—Z be defined as f(i,j) = | t/2 | i
+ | 3t/2 | j.1t is not difficult to see that fis an L(s,
t)-labeling of G and its L (s, t) edge span is
| 3t/2 | .Hence, B,(G) = | 3t/2 | if 2s <t and
m, n=3. For the case m =2, let f: V(G)—Z be defined
as f(0,)) =jt if j is even and f(0,j) =jt +s if j is odd;
f(1,j) =jt+sif jis even and f(1,j) =t if j is odd. It
is easy to check that if 25 <¢, then fis an L(s, t)-labe-
ling of G and its L(s, ) edge span is s + ¢. Hence,
B,(P, xP,) =s +t for n=2.
Since P,, x P, is a subgraph of [, 8,,(00) =8,,(P,,
x P.). On the other hand, it is easy to see that L(s,
t) -labelings of P, x P, for m, n=3 defined above can
be extended to L(s, t)-labelings of 0. Thus B,(00) =

Bu(P, XP,).
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