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Abstract: A novel behavioral model using three-layer time-delay
feed-forward neural networks ( TDFFNN) is adopted to model
radio frequency ( RF) power amplifiers exhibiting memory
nonlinearities. In order to extract the parameters, the back-
propagation algorithm is applied to train the proposed neural
networks. The proposed model is verified by the typical odd-
order-only memory polynomial model in simulation, and the
performance is compared with different numbers of taped delay
lines( TDLs) and perceptrons of the hidden layer. For validating
the TDFFNN model by experiments, a digital test bench is set up
to collect input and output data of power amplifiers at a 60 x 10°
sample/s sampling rate. The 3. 75 MHz 16-QAM signal generated
in the vector signal generator( VSG)is chosen as the input signal,
when measuring the dynamic AM/AM and AM/PM
characteristics of power amplifiers. By comparisons and analyses,
the presented model provides a good performance in
convergence, accuracy and efficiency, which is approved by
simulation results and experimental results in the time domain and
frequency domain.
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n modem wideband communication systems, high power
Iamplifiers(HPAs) of the base station often produce severe
memory effects and nonlinearities, which contribute to asym-
metries between lower and upper intermodulation distortion
(IMD) and spectral regrowth. Behavioral modeling of HPAs
has attracted much interest in the past few years that has
yielded various models such as the Saleh model, the Volterra
series model, the Wiener model, the Hammerstein model, the
polynomial model and the neural networks model, etc' ™.

The simple static model is the Saleh model"", which is
used to model traveling-wave tube amplifiers, but it is often
used to model solid state power amplifiers. The general non-
linear model with memory is the Volterra model” . Howev-
er, high computational complexity makes the method im-
practical. So the Volterra model is usually reduced by some
simplification methods'”'. The Wiener model'"™ and the
polynomial model'®™, as in the special cases of the Volterra
model, are widely adopted to model HPAs.

Recently, neural networks( NNs), which can approximate
any continuous function arbitrarily well, have become an im-
portant method to model the nonlinear dynamic system, and
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they have been successfully used to model and design RF
power amplifiers, microwave components and circuits. In
this paper, a novel neural networks-based behavioral model
of RF power amplifiers is employed and simulation and ex-
perimental results show that the model provides a good per-
formance.

1 Behavioral Model of PAs

Behavioral RF PA models usually use the complex input
and output sampled signals of PA, which can be represented
as rectangular coordinates (in-phase I and quadrature-phase
Q) or polar ones( magnitude and phase). And many topolo-
gies of NNs were reported in the literature for the modeling
of PAs, such as two separate real-valued NNs'*', one real-
valued NN with I and Q as inputs, and the complex-valued-
based NNs'”' | etc. Most of these neural networks are based
on the multilayer perceptrons, recurrent NNs'"”', or time-de-
lay NNs™'.

The proposed RF PA model uses time-delay feed-forward
neural networks, which consist of three layers: an input lay-
er, a hidden layer and an output layer, as shown in Fig. 1.
In contrast to the previous models mentioned, this method
applies the envelope of the sampled input and output signals
rather than in-phase I and quadrature Q components, and the
phase information is not passed through the NNs but presen-
ted in the output layer, which is similar to the model in Ref.
[11].
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Fig.1 Block diagram of the novel TDFFNN behavioral model

Hidden layer

The following equation describes the relationships of the
memory model of HPAs in this paper.

y(n) =g(r(n),r(n-1),....,r(n-L))
exp(j(p(n) +p(r(n),r(n-1),....,r(n-L)))) (1)

where g(+) and p(-) represent the AM/AM and AM/PM dis-
tortions, respectively; r(n) and ¢(n) are the amplitude and
phase of the input signal, respectively; and L is the memory
depth of the model.

In Fig. 1, the TDFFNN structure models two nonlinear func-
tions (g(-) and p(-)), whose inputs are composed of the
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amplitude r(n) and taped delay lines(TDLs). The relationships
are described as

M
g() = Y w, 0(n) +b; 2)
k=1
M
p(+) = Y wy O(n) +b, 3)
k=1
where O,(n) =f(net,(n)),
L
net,(n) = z wiml) r(n —i) +b, 4)
i=0
and the active function is
1 _eflx
f(x) =tanh(x) “1e™ (5)

w and b represent the scale weights and biases, respectively.
All the parameters can be adjusted, so that the proposed net-
work exhibits the desired behavior.

In the input layer, L represents the number of previous sam-
ples included in the mode and TDLs are used for considering
the history envelope of the input signal, which is needed for the
memory effects modeling of dynamic AM/AM and AM/PM
characteristics. If L =0, the model will become the memory-less
model with static AM/AM and AM/PM characteristics.

2 Training and Simulation

In the training procedure of the time-delay feed-forward
neural networks, the standard back-propagation or Leven-
berg-Marquardt back-propagation algorithm'”' can be em-
ployed to adjust the parameters and minimize the cost func-
tion. Here, the cost function is described by the mean
squared error( MSE) performance function, that is

D1y = Yoeaa(m)

E = 1010g10( - 5 ) (6)

where y_ (n) is the measured output signal of the PA, and
Vmosa (77) 1S the output signal of the TDFFNN model, and N
is the number of samples. In order to evaluate the TDFFNN
model, the odd-order-only memory polynomial model'” ex-
tracted from the actual class AB PA is used for simulation
and comparison.

K Qo
yn)y = Y Y e x(n-q) |x(n -q) | (7)

&=
where K =5 and Q =2. The efficient modulation scheme
(16-QAM symbols of 8 times oversampling with a raised
cosine shaping filter) is used to generate the input baseband
signal in Matlab, and the output signal can be easily calcu-
lated by the odd-order-only memory polynomial model.
With the input and output samples collected from the memo-
ry polynomial model, the TDFFNN model can be simulated
and the parameters in the model can be optimized after train-
ing.

Typical convergence curves of the training process are
shown in Fig. 2 with L =0,1,2,3 and M =10. In Fig. 3,
while the number of perceptrons in the hidden layer M in-

creases from 2 to 10, the MSE curves(L =2) of different M
are compared with each other. From Fig. 2 and Fig. 3, we
can see that the MSE drops when L or M increases, while the
lowest value of the convergence curves of the MSE is about
10 * when L and M are large enough, because the achieved
MSE relates to the structure of the model and training algo-
rithms, etc. The structure of fewer perceptrons also has better
convergence curves. It means more complex structure maybe
is not the best choice when considering the compromise be-
tween efficiency and accuracy. Fig. 4 shows the power spec-
tral density( PSD) comparison between the TDFFNN model
and the odd-order-only memory polynomial model.
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3 Experimental Results

In order to characterize the PA, I/Q data are collected by
60 x 10° sample/s sampling using the test bench shown in
Fig.5 and Fig. 6, which includes one DAC( AD9777), two
ADCs(AD9862), an FPGA, a modulator, a demodulator, an
up converter, a down converter, and a PA™MTS
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Fig.5 Block diagram of the test bench
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Fig.6 Photograph of the test bench"®

Here, the wideband 16-QAM signal generated in the vec-
tor signal generator( VSG) is chosen to measure the dynamic
AM/AM and AM/PM characteristics of the PA and the out-
put of the PA whose center frequency is 2. 14 GHz can be
measured by a vector signal analyzer( VSA).

With 4 096 input and output I/Q samples of the PA, the
typical convergence curve of the training process is shown in
Fig. 7. About 24 x 10’ input and output samples, which have
never been used in training are used for validation data of
our proposed model. Fig. 8 depicts the time-domain valida-
tion results of I and Q components of the TDFFNN model
for a 16-QAM signal. The behavioral model matches the
measurement data very well.
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Fig.7 Convergence curves of the training process(M =10, L =1)

Fig. 9 shows PSD comparison between the TDFFN behav-
ioral model and the measurement data of the 16-QAM signal
with a 3. 75 MHz bandwidth and at a 2. 14 GHz center fre-
quency. In Fig. 8 and Fig. 9, the validation results in the time
domain and frequency domain give satisfactory results. The
error between the TDFFNN model and the measurement is
determined by the modeling and measuring accuracy, which
cannot be eliminated.
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the measurement data of the 16-QAM signal

4 Conclusion

In this paper, a novel behavioral model using time-delay
feed-forward neural networks( TDFFNN) is adopted to model
RF power amplifiers exhibiting memory effects and nonlin-
earities. The dynamic nonlinear behavior of the PA can be
reproduced by the proposed TDFFNN model very well. The
back-propagation algorithm is used to train the TDFFNN
model so as to extract the model parameters. Validation and
accuracy assessment of the developed TDFFNN model in the
time domain and frequency domain show an agreement be-
tween the TDFFNN behavioral model output data and meas-
urement data for a baseband signal of a 3.75 MHz band-
width.
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