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Abstract: To reduce the difficulty of implementation and shorten
the runtime of the traditional Kim-Fisher model, an entirely
discrete Kim-Fisher-like model on lattices is proposed. The
discrete model is directly built on the lattices, and the greedy
algorithm is used in the implementation to continually decrease
the energy function. First, regarding the gray values in images as
discrete-valued random variables makes it possible to make a
much simpler estimation of conditional entropy. Secondly, a
uniform method within the level set framework for two-phase and
multiphase segmentations without extension is presented. Finally,
a more accurate approximation to the curve length on lattices with
multi-labels is proposed. The experimental results show that,
compared with the continuous Kim-Fisher model, the proposed
model can obtain comparative results, while the implementation is
much simpler and the runtime is dramatically reduced.
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eing the basis of many other applications, image seg-

mentation has received much attention. Among image
segmentation techniques, statistical approaches together with
information theory play an important role. A nonparametric
statistical model for image segmentation from an informa-
tion-theoretical perspective was proposed in Ref. [1]. We
call it the Kim-Fisher model in this paper. The model can
obtain satisfactory segmentation results, whereas, due to the
complexity of the level set approach and the Parzen estima-
tion, the implementation is difficult and it takes much time
to complete the segmentation.

In this paper, we establish a discrete Kim-Fisher-like
model on lattices. The discrete model is different from the
Kim-Fisher model in several major ways. First, regarding
gray values as discrete-valued random variables makes it
possible to estimate the probabilities with a much simpler
method. Secondly, when the Kim-Fisher model and all the
other segment models within the level set framework are ap-
plied to multiphase segmentation, some extensions must be
built. In the Kim-Fisher model and Ref. [2], the extension
was via multiple level set functions. In Ref. [3], the exten-
sion was built by introducing an additional region indication
function. In this paper, we develop a uniform method with-
out introducing any additional functions. Thirdly, we add an
area term in the energy function, which can keep the evolu-
tion moving in the proper direction. Unlike the energy func-
tion of the Kim-Fisher model, all the terms in the objective
function of the proposed discrete model are defined on lat-
tices and formulated as functions of the labels, namely, a
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discrete level set. And we do not use traditional level set
techniques to evolve the curve; instead, we accomplish the
segmentation by updating the discrete level set. The idea of a
discrete level set function was first built in Refs. [2,4].

The difference between our work and Ref. [2] is that we
aim at a fully discrete Kim-Fisher-like model instead of only
a fast algorithm. Besides, the formulation to approximate the
curve length on lattices in this paper is more accurate than
that in Ref. [2]. Furthermore, as mentioned above, in Ref.
[2], some extensions must be built to do multiphase seg-
mentation. While we develop a uniform method within the
level set framework for two-phase and multiphase segmenta-
tions without extension. The last difference is that we evolve
only boundary points while Ref. [2] sweeps every pixel on
the image.

1 Kim-Fisher Model""

In this section, we will cite some illustrations in Ref. [1]
to explain the Kim-Fisher model. The regions of an image
are distinct in the sense that they have different probability
density functions for the pixel intensities. The Kim-Fisher
model is based on the assumption that the pixel intensities in
each region are independent and identically distributed
(i.1.d.). The assumption can be formulated by

{G(x)IxeR }~p,, {G(x)IxeR,}~p, (1)

where G(x) is the image intensity at pixel x; R, and R, de-
note the two regions whose associated probability density
functions are P, and P,, respectively. To segment the image,
we hope that the evolution of the segment curve C can
match the boundary between R, and R,. Suppose that C di-
vides the image into two regions: the region inside the curve
R . and the region outside the curve R _. And a binary label
Ly Q—{L,,L_} is defined as

L, ifxeR,

Le(x) ={Li ifxeR (2)

Supposing that X is a uniformly distributed random loca-
tion in the image domain, then the image intensity G(x) and
the binary label L.(x) are two interrelated random varia-
bles. Ref. [ 1] explained that the mutual information
I(G(X); L.(X)) can be used as a segmentation criterion
and proved that I( G(X); L.(X)) is maximized if and only
if C is the correct segmentation, i.e.,if R, =R,,R_ =R,
(or, equivalently, R, =R,,R_ =R)).

The energy function in Ref. [1] is defined as

E(C) == | QIGO0 LX) +9§ds  (3)

where | (2| is the area of the image domain and HG(X);
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L:(X)) is an approximation to I( G(X); L-(X)). In Ref. -
[1], nonparametric Parzen density estimates are used to ob- H(GX) | LX) = ; H(GX) | LX) = 1) -
tain the approximation. -1 ‘ R* ‘
. I : P(L(X) = 2 HGX [ LX) =1
2 Discrete Kim-Fisher-Like Model 02|
T-1 K 7-1
2.1 Objective function =->{XI z (ke ]log[ 2 P(ka,l}
=0 k=0 4= 5=0
The idea of using I(G(X); L.(X)) as a segmentation cri- |R" | -1 K T | R |
terion is creative. Whereas, in the Kim-Fisher model, regard- ‘ 0 ‘ == ~ ; 2:6 a, P (k)logP (k) ‘ 0 ‘ (7

ing G(x), the image density at pixel x, as a continuous-val-
ued random variable makes it difficult to approximate
I(G(X): Le(X)).

The discrete Kim-Fisher-like model is also based on the
assumption that the pixel intensities in each region are inde-
pendent and identically distributed. The difference is that
G(x) in the discrete model is a discrete-valued random vari-
able. Suppose that there are T regions in the image. Then for
an image defined on the lattice of size M x N(1<m<M, 1

<n<N),
{ mn

(m,n) eR} ~P, O0=st<T-1 (4)

where R, R, ..., R,_, is the virtual partition of the image;
P, is the associated probability mass function of R,; G,, is
the gray value of pixel (m, n), and G,, € {0,1,2, ..., K},
where K is the maximum gray level in the image. The dis-
creteness of G,, makes it possible to estimate the probability
by the frequency of occurrence, and it is a simple and effec-
tive method. The label function L is a discrete-valued func-
tionand L, {0,1,2,...,T-1}.

In this paper, we use R! to denote the region of L = t. For
the uniformly distributed random location X, the maximiza-
tion of I(G(X); L(X)) is equivalent to the minimization of
conditional entropy H(G(X); L(X)). We use the latter as
the segmentation criterion. And H(G(X); L(X)) is mini-
mized if and only if Rm =R, and {i} and {j} are arbitrary
permutations of {0, 1, 2, T - 1}. Although this proposi-
tion can be proved by extending the proof in Ref. [1], for
the sake of integrality, we present our proof, which is slight-
ly different from that of Ref. [1].

Proof For any 0<t<T -1, we have

H(GX) [L(X) =1 == 3 P(G(X) =k|
L(X) =1logP(G(X) = k|L(X) =1) (5)

where

P(GX) =k| LX) =1 = ZP(G(X) =k|X eR,

T-1

= ZP(G(X) =
) =18 =

T-1

ZP (k) a, (6)

P (k
%P0
where P is the mass function in formula (4) and «, =
[R,NR|

Ry |
described by formula (4).

. The second equality is based on the assumption

The inequality holds due to Jensen’s inequality. If RL
R, we have P(G(X) \ L(X) =t) =P,(k), u is the label
satisfying R =R, If we use H,(G(X) \ L(X)) to denote

H(G(X) \ L(X)) under the condition of Rm R, then

T-1 ‘Ru K
H,(G(X) [ L(X)) ==3 o] > P,(k)logP, (k)
(8)
Now, we come back to Eq. (7),
H(G(X) |L(X)) = - > 2 ZaﬂP;(k) .
ogp (b AR _ 5§ IR
|0 =4 o
R, mR‘ZP(k)logP()=— | Ry |
t ‘ k= 5=0 ‘Q‘
Y P.(k)logP,(k) = H,(G(X) | L(X)) (9)

k=0

In many segment models, including the Kim-Fisher mod-
el, there is a length term in the objective function. The main
purpose of this term is to avoid redundant curves. Besides
the length term, we add an area term to keep the evolution
moving in the proper direction. Then, our objective function
can be formulated as

E, (L) = MNH(G(X) | L(X)) + a,len(L) +p,area(L)
(10)

where «, and 3, are parameters and «, >0. A(G(X) \ L(X))
is the estimation of the conditional entropy H ( G ( X);
L(X)).Len(L) is the length of the segment curve, that is,
the boundaries between every two adjacent regions. And
area( L) is the sum area of the regions with either odd region
labels or even labels. This area term can be viewed as the
generalization of the constant term™ in the traditional level
set approach.

2.2 [Estimation of conditional entropy

Owing to the discreteness of gray values, we can use the
frequency of occurrence to approximate the conditional
probability in H(G(X); L(X)). Before presenting the for-
mulation of estimation, we first introduce some notations.
Suppose that the image is defined on a lattice of M x N(1<
m<sM,l<n<N).

K is the maximum gray level in the image; T is the total
number of regions in the image; a; is the cardinality of the
set of {(m,n) |L,, =i,G,, =j},(0<i<T-1,0<j<K);
Q, is the total number of pixels with label i, (0<i<T-1).
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Obviously, we have
K
Z a; =Q;
j=0

For the sake of simplicity, we drop the index X in the fol-
lowing formulae. Then we can estimate the conditional en-

tropy by

T-1

> 0, =MN

AGX) |L(X) = Y P(L=DAG|L =i) =

i=0

T-1 0, I'e
_gMN;P(sz‘L=l)1OgP(G =jlL =i =
7-1 K
- Y S e =l S alog (D

MN, =

0<j<K

S MN&= O, © 0, 0,

In fact, in the discrete model, we need not calculate
A(G(X) | L(X)). Only the increment of H(G(X) | L(X))
after one boundary point has changed its label makes sense.
And as we will see later, this increment is easy to calculate.

2.3 Estimation of curve length

After the estimation of the entropy, we will come to the
length term. The segment curve consists of the boundaries
between every two adjacent regions. It is difficult to calcu-
late the curve length on lattices with multi-labels, so we use
a function of L to approximate the sum length of the bound-
aries. Before presenting the formulation, we present a defini-
tion frequently used in this paper.

Definition 1 Given a discrete-valued function L on an M
x N lattice, we say that pixel (m, n) is a boundary point if
there exists (p, g) € S(m, n) such that L, # L, , where
S(m, n) is the eight neighbors set of pixels (m, n).

Then, our approximation to the sum length of the bounda-
ries is

1

len(L) = 72 (1 - Lmn ° qu)
12 m,n (]I,q)eS(m,n).
L,oL, = {_1 o (12)
" - 1 if Ln"l # Ll)q

Among the neighbors of (m, n), only those whose L val-
ues are different from L, can attribute to the sum. If pixel

(m, n) is not a boundary point, the term (1-L, -

(p, q) € S(m, n)
L,) is equal to 0; otherwise, the term is two times the num-

ber of neighbors who have different L values from L, . So,
the term z (1 -L, o L, ) is a weighted sum of

Pq
m,n (p,q) €S(m,n)
all the boundary points on lattices. However, the weighted

sum enlarges the actual length. For a horizontal or vertical
line segment, the weighted sum magnifies the length 12
times. So a factor of 1/12 is needed in Eq. (12).

A special case of Eq. (12), e. g., on the lattice with two
labels, is proposed by us in Ref. [6], and the advantage over
other methods has been explained. In this paper, we propose
a generalized formulation for the curve length on the lattice
with multi-labels. The method in Ref. [7] cannot calculate
the curve length on the lattice with multi-labels. The calcula-
tion of the curve length in Ref. [2] is the direct discretiza-
tion of 2 ﬂ | VH($,) | dy, (&, is the level set function)

n

i

mn*

using upwind difference. The advantage of Eq. (12) is illus-
trated in Fig. 1. The square brackets in Fig. 1 denote the val-
ues of two level sets, namely, [ ¢,, ¢,]. The curve consists
of OA, OB (quarter circle with radius 100) and OC (line
segment of length 95). The length of the curve should be
1007 + 95 = 409. 16. The result of Eq. (12) is 403. 67,
with the relative error of 1.36% , while the result of the
method in Ref. [2] is 598.22, with the relative error of
31. 6% . The big discrepancy of Ref. [2] is partially due to
the inaccuracy of discretization and partially because of the
fact that the quarter circle OB is counted twice.

Fig.1 Curve on the lattice with two level sets
2.4 Formulation of the area

In order to accelerate the segmentation and keep the evo-
Iution moving in the desired direction, we add an area term
to the energy function. The area term is formulated as

area(L) = %2(1 +mod(L, ,2) 1) (13)

If L,, is an even number, 1 + mod(L,,,2) o1 =0. Other-
wise, 1 + mod(L,,,2) ol =2. So the sum is the area of re-
gions with odd labels. This area term can be viewed as the
generalization of the constant term in the traditional level set
approach, which can be either the area inside or outside the
curve. Minimizing this area term alone will result in the
shrinking of odd-labelled regions. Of course, minimizing the
area term is not the purpose, but we can keep the evolution
moving in the desired direction by adjusting the parameter of
this area term.

3 Optimization of the model
3.1 Optimization of the objective

For simplicity, we present a slightly simpler formulation of
the energy by dropping the constants in len(L) and area(L).

ai.
E(L) = - Z a;log af - az (p‘q;(m‘”)Lm oL, +

B Y, mod(L,,.2) - 1

m,n

(14)

As mentioned above, we implement the segmentation by
refreshing the label L. To ensure the stability, we only up-
date the labels of boundary points. To optimize Eq. (14), the
greedy algorithm is used. That is, refresh every boundary
point (m, n) by setting

(15)

mn mn

L, =arg min (E(L) L =1

The calculation of the energy E(L) defined by Eq. (14)
is time consuming. Fortunately, we only need to know the
relative value of E(L) \ L, =t0<t<T-1, which is equiv-
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alent to knowing the difference of E(L) for different L.

We first discuss the conditional entropy term. Suppose
that G,, = p and L,, = x. If L, changes to y, H( G (X)
| L(X)) in Eq. (11) changes to A,(G(X) | L(X)), then the
change of the entropy is

AH = B,(G(X) | L(X)) - A(G(X) | L(X)) =

1 0, -1 0, +1
-——10,log + Q. log = +
MN[ 0, Y 0,
a,loga,, —(a, —1)log(a, —1) —log(Q, -1) +

a,loga, —(a, +1)log(a, +1) +log(Q, +1)] (16)
Compared with the change of the entropy, the changes of the
length term and the area term are much simpler. When L,
changes from x to y, only items including L, , in the length
term and the area term of Eq. (14) change while others re-
main unchanged. After we have calculated the change of
E(L) for different L, it is easy to compute arg . sIgl;l_ 1(E( L)

'L, =1).
3.2 Algorithm

The steps of the algorithm are as follows:

Step 1 Find all the boundary points according to defini-
tion 1.

Step 2 For every boundary point (m, n), set L, =
arg min (E(L) L, =1).

<t<T-
Step 3 If labels of some boundary points have been
changed in step 2, go to step 1; else, finish.

4 Experimental Results

All experiments run on a 2.4 GHz Intel Pentium 4 CPU
with 256 MB memory and the programs are written in C lan-
guage together with Matlab. Experimental results are shown
in Figs.2 to 7.

In Figs.2 to 4, T =2. That is, the segment curve partitions
the image into two areas: L =0 and L =1. Figs. 3 and 4 are
two challenging segmentation problems. Compared with
Ref. [1], we obtain comparable results with the proposed
method, which improves speed by more than 100 times, and
one can refer to Ref. [1] for the comparison of results. The
notable progress in runtime is partly due to the evolution
policy and partly due to our much easier estimation of the
entropy.

(c)

Fig.2 Segmentation of plane image (Image size is 200 x
100, =0.35,8= -0.08, L € {0, 1}, runtime is 0. 484
S.) (a) Initial curve; (b) 20 iterations; (c¢) 50 iterations; (d) 100
1terations

In Fig.5, there are three regions, the sky, the cloud and
the tree. In Fig. 6, there are the background, the white matter
and the gray matter. So we choose T =3 for the two images.

In Fig. 7, the background and the three shapes have four
different gray values, so we choose T =4. Different from the
above results, we use the image of label function to display
the evolution process. As shown in Fig. 7(d), different re-
gions in the original image have different label values.

(c) (d)
Fig.3 Segmentation of zebra image (Image size is 200 x
200, « =0.636,8= —0.41, Le {0,1}, runtime is 1. 454 5. ) (a)
Initial curve; (b) 50 iterations; (c) 80 iterations; (d) 140 iterations

DOoO0o0oo0oooaod
3 B

(d)
Fig.4 Segmentation of leopard image (Image size is 200 x
118, =0.45,8= -0.28, L € {0, 1}, runtime is 0. 625 s.) (a)

Initial curve; (b) 14 iterations; (¢) 28 iterations; (d) 50 iterations

Fig.5 Segmentation of cloud image (Image size is 150 x
100, 2 =0.4,8=0,L e {0, 1,2}, runtime is 0. 344 s.) (a)

Initial curve; (b) 10 iterations; (c¢) 20 iterations; (d) 35 iterations
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5 Conclusion

In this paper, we propose an entirely discrete Kim-Fisher-
like model on lattices. First, regarding the gray values as dis-
crete-valued random variables makes it possible to make a
much simpler estimation of conditional entropy. Secondly, we
present a uniform method within the level set framework for
two-phase and multiphase segmentations without any exten-
sion. Finally, we present a more accurate formulation to cal-
culate the curve length on the lattices with multi-labels.
Compared with the continuous Kim-Fisher model, the model
proposed in this paper can obtain comparable results, while
the runtime is dramatically reduced.
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