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Abstract: To resist the side channel attacks of elliptic curve
cryptography, a new fast and secure point multiplication
algorithm is proposed. The algorithm is based on a particular kind
of addition chains involving only additions, providing a natural
protection against side channel attacks. Moreover, the new
addition formulae that take into account the specific structure of
those chains making point multiplication very efficient are
proposed. The point multiplication algorithm only needs 1 719
multiplications for the SAC260 of 160-bit integers. For chains of
length from 280 to 260, the proposed method outperforms all the
previous methods with a gain of 26% to 31% over double-and
add, 16% to 22% over NAF, 7% to 13% over 4-NAF and 1% to
8% over the present best algorithm—double-base chain.
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ince the elliptic curve cryptography ( ECC) was intro-

duced by Miller and Koblitz!'™, it has been the research
subject of plenty of improvements and attacks. Various
methods have been proposed to speed up and secure the
computation of the scalar multiplication”™ .

In this paper, we study a very particular kind of addition
chains, special addition chains (SAC), which can lead to an
exponentiation algorithm resistant natural side channel
analysis. Moreover, the results show that it is suitable for
general elliptic curves in prime fields and for giving rise to a
fast and secure point multiplication. After some recall about
ECC, we introduce SAC and the way that can be adapted to
ECC. Finally, we compare them to other SCA resistant algo-
rithms.

1 Background

An elliptic curve is the set of solutions for a Weierstrass
equation over a field. For cryptographic purposes, this field
is most frequently used as a finite field of the form GF(gq).
In these particular cases, the Weierstrass equation can be re-
duced to the following simple forms:

v +xy=x" +ax’ + b over GF(g =2"), with
a,b e GF(g) and b#0

m

¥y =x’ +ax +b over GF(gq =p"), p >3, with
a,be GF(q) and 4a’ +27b° #0
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If the formal point at infinity © is added to the set of so-
lutions, an addition operation can be defined over the elliptic
curve, and the set of the points of the curve turns out to be a
group. In Jacobian coordinates, the curve E(p >3) is given
by Y =X + aXZ' + bZ°, the point (X, Y, Z) on E corre-

) and the formulae are

. . . X X
sponding to the affine point (?, 7

as follows:

Addition:

P=(X,,Y,,2),0=(X,,Y,,Z), P+0=(X,,Y,,Z,)
A=X72?B=X,2’>,C=Y,2',D=Y,Z ,E=B-A
F=D-C, X,= -E -2AE* +F
Y,= -CE +F(AE’ -X,),Z,=Z,Z,E

Doubling:
2P=(X,,Y,,Z,),A=4X,Y*, B=3X,* +AZ®
X,=-2A+B,Y,= -8Y," +B(A-X,),Z, =2Y,Z,

The computation costs are 12 multiplications (M) and
4 squarings (S) for the addition and 4M and 6S for the dou-
bling.
Montgomery"' proposed the following curves.
Definition 1 Let E be a prime field, an elliptic curve
E,,/E is said to be in the Montgomery form if its equation is

By =x’ +AX" +x

It is noted that curves in the Montgomery form can always
be converted into a short classical form. However, such a
conversion is false.

On such curves the addition and the doubling formulae are
as follows:

Addition: n#m
X,..=2Z, (X, -Z)(X,+Z) +(X,+Z)(X,-Z))"

Z,,, =X, (X, -Z)(X,+Z) ~(X,+Z,)(X,~Z))"

Doubling: n =m
4X 7 =(X,+2)' -(X,-2)"
X, =(X,+2)(X,-2Z)"
Z, =4X,Z((X, -Z)" +((A+2)/4)(4X,Z,))

n“~n

where (X,, Y,, Z,) represent the point nP, for a given point
P. Thus an addition takes 4M +2S whereas a doubling needs
3M +28S. It is well known that one needs to know the x- and
z-coordinates of the points mP, nP and mP — nP to compute
the point (m + n) P = mP + nP. Finally, it is notable that
there exists a formula to recover the y-coordinate at the end
of a point multiplication'” .

Side channel attacks were discovered by Kocher et

al. "™ They aim at recovering secret information, the bits
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of the exponent in a point multiplication, by not only analy-
zing the amount of time required to perform secret opera-
tions, but also power consumption or electromagnetic radia-
tion. However, the methods have weaknesses. It mainly de-
pends on the fact that additions are more expensive than
doublings during a point multiplication. Thus a side channel
attack allowing one to deduce what kinds of operations are
computed and so guess the bits of the exponent. Several
countermeasures have been proposed against this threat. One
example is the use of dummy operations during the process
in order to make the group operations look identical and
another example is the side channel atomicity' which con-
sists of splitting the curve operations into identical atomic
blocks.

In this paper, in order to avoid side channel attacks, we
propose to perform the point multiplication using only point
additions. This can be done by special addition formulae in
Jacobian coordinates.

2 Scalar Multiplication Algorithm without Dou-
bling
In this section, a new exponentiation method is presented

and it can be adapted to elliptic curve scalar point multipli-
cation.

2.1 Special addition chains

Some classical definitions are used in the addition chain
study.

Definition 2  An addition chain computing an integer k
is given by two sequences v and w such that

v=_(Vy, -ees V)
v, =v, +v,

Sw),w, = (i, 1,)

vo=1,v, =k
I1<is<s
w=(w,, .. 0<i,i,<i-1
The length of the addition chain is s.
Definition 3 A star addition chain is an addition chain.
It satisfies

Vi,Wi:(i—l,j)

for some j such that 0<<j<i — 1. That is to say, for all i,
we have v, =v, | +v,.

In this case we can omit i —1 and just write w, =j.

Research about addition chains and how they are used in
exponentiation problems can be referenced in Ref. [ 10]. In
the remainder of this paper, a particular kind of star addition
chain is defined as follows.

Definition 4 A special addition chain is a star addition
chain with

As w, can take only two different values, we rewrite w as

w=(w,,...,w,) e{0,1}7

Satisfying

vo=1,v,=2,v,=3

v, ifw,, =0
V=V, VSV, =V, + ] -
to A oy ifw,, =1

Finally, in order to lighten the notations, we note k = (w;,,
W)
Example1 34 =(1,0,0,0,1,0)
Vv, =V, +V,=2+1, wy,=1l=v,=v, +v,=4
w, =0=v, =4 +3, w, =0=v, =7 +4
we=1=v, =11 +4,w, =1=v, =15 +4
wy =0=v, =19 +15 =34

Given a point P on E, an integer k and k = (w5, ..., w,), it
is easy to deduce the following exponentiation algorithm.

Algorithm 1

Input: P in E and k= (ws, ..., w,);
Output: kP in E.
(U,, Uy, Uy)«(P,2P,3P)
for i=3 to s do

if w; =0 then

U,U,

end

U,«Us

Uy«U, +U,
end
return Us

This algorithm is particularly good for elliptic curves in
the Montgomery form. As at each step, we have the points
U =kP,U,=k,P and U, =U, + U, = (k, +k,) P =k'P,
that is, we have exactly what we need to compute U, + U,
=k'P+kP,ie{l,2}.

Eventually, the costs of this algorithm are one initial dou-
bling and an s — 1 addition, that is, (4s—1)M and (2s +1)
S. Next we show that this approach can be generalized as
non-Montgomery curves.

2.2 New elliptic curve point addition formulae over

prime fields

Let p >3 be a prime number and E/F, an elliptic curve.
fP=(X,Y.2),0=(X,,Y,,Z) and P+ Q0 =(X,,Y,,Z)
are three points of E given in Jacobian coordinates, then we
have

X, =((Y,-Y)" = (X, +X,)(X, -X))*) 2 =X,'Z’
Y3 =( _YI(X2 _X1)3 +(Y2 _Yl)(X](XZ _X1)2 -
xX)NZ =y\Z
Z,=2X,-X)) Z=2,7

Thus we have (X,,Y,,Z,) =(X,2°,Y,Z’,Z,7Z’) ~ (X,
Y., Z;).So when P and Q have the same z-coordinate, P +
Q can be obtained using the following formulae.

Addition:

P:(XI’Y]’Z)9Q:(X2’Y2?Z) B P+Q=(X;’Y;’Z;)
A=(X,-X),B=X,A,C=X,A,D=(Y,-Y,)’
X,=D-B-C, Y;=(Y,-Y)(B-X,) -Y,(C-B)
Z;:Z(Xz_Xl)

This addition requires 5M and 5S.

It seems to be infrequent that both P and Q share the same
z-coordinate. However, if we look at the quantities X, A =
X,(X,-X,)* and Y,(C-B) =Y,(X, - X,)’ computed dur-
ing the addition, they can be seen as the x- and y-coordinates
of the point (XI(XZ _Xl)Z)v YI(X2 _Xl)s’ Z(Xz _Xl)) ~
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(X,,Y,,2). Thus, it is possible to add P and P + Q with our
new formulae.

The same remark can be conducted from the doubling for-
mulae. Indeed the quantities A = X, (2Y,)° and 8Y,* =
Y,(2Y,)" are the x- and y-coordinates of the point (X,
(2Y,))%, Y, (2Y,)%,2Y,Z) ~(X,,Y,, Z) allowing us to
compute P +2P without additional computation. Using these
formulae, the computational costs of algorithm 1 become (5s
-1)M and (25 +4)S.

Some cryptographic protocols only require the x-coordi-
nate of the point kP. In this case, it is possible to save one
multiplication by algorithm 1 noticing that Z does not appear
during the computation of X, and Y,’; thus, it is not necessa-
ry to compute Z; during the process. Thus, we propose new
addition point addition formulae taking advantages of the
specificity of special addition chains.

3 Comparisons to Other SCA Protected Algorithms

In this section we compare the proposed algorithm to the
Montgomery ladder when it is used on Montgomery curves,
and to the classical double-and add, NAF and 4-NAF meth-
ods, plus the recent double-base chain proposed in Ref. [11]
when used on general curves.

3.1 Montgomery curves

The Montgomery ladder is a classical algorithm naturally
side-channel-attack resistant. Indeed, for each bit (except the
last) of the exponent k, one addition and one doubling are
computed, which gives a complexity of (7M +4S) ( | k| -
1) over prime fields (where | k| is the bit length of k). So if
we consider that the ratio of squarings to multiplications is
about 0. 8 in F, and then 160-bit integers, we obtain Tab. 1.

Tab.1 Comparison between Montgomery ladder
and SAC in F, for a 160-bit exponent

Algorithms Cost/M

Montgomery 1 622
SAC300 1 680
SAC280 1 568
SAC260 1456

With chains of lengths 280 and 260, we obtain a gain of
3% and 10% , respectively.

3.2 General curve over F,

In the case of general curves, protecting the classic algo-
rithms against SCA implies the use of side channel atomici-
ty, which implies that the ratio of squarings to multiplica-
tions is 1. However, the very structure of special addition
chains is not allowed to resort to side channel atomicity( We
keep the ratio of squarings to multiplications at 0. 8) . We re-
fer to Ref. [11] for a precise study of double-and add,
NAF, 4-NAF and double-base chain complexities. For 160-
bit integers, we obtain Tab. 2.

We conclude that the use of special addition chains of
length 300 already have a gain of 21% over double-and add
and 10% over NAF. For chains of lengths from 280 to 260,
the proposed method outperforms all the previous methods,
with gains of 26% to 31% over double-and add, 16% to
22% over NAF, 7 to 13% over 4-NAF and 1% to 8% over
double-base chain.

Tab.2 Comparison of different elliptic curve exponentiation
algorithms over F, for a 160-bit exponent

Algorithms Cost/M
Double-and add 2511
NAF 2214
4-NAF 1983
Double-base chain 1 863
SAC300 1 983
SAC280 1851
SAC260 1719

4 Conclusion

In this paper, a new exponentiation method based on spe-
cial addition chains is proposed. It is suitable for the appli-
cation of Montgomery elliptic curves and general curves in
prime fields. Besides, new formulae in the case of general
curves that take advantage of the particular structures of spe-
cial addition chains are presented. All of these lead to a very
simple and efficient scalar multiplication algorithm. As a re-
sult, this kind of scalar multiplication algorithm directly
provides a natural protection against side channel attacks.

References

[1] Miller Victor S. Uses of elliptic curves in cryptography[ C]//
Advances in Cryptology—CRYPTO’85, Lecture Notes in
Computer Sciences. Springer-Verlag, 1986:417 —428.

[2] Koblitz Neal. Elliptic curve cryptosystems [J]. Mathematics
of Computation, 1987,48(177):203 —209.

[3] Avanzi Roberto M, Cohen Henri, Doche Christophe, et al.
Handbook of elliptic and hyperelliptic curve cryptography
[M]. Boca Raton, FL, USA: Chapman and Hall/CRC
Press, 2005.

[4] Hankerson Darrel, Menezes Alfred J, Vanstone Scott. Guide
to elliptic curve cryptography| M] . Springer-Verlag, 2004.

[5] Montgomery P L. Speeding the Pollard and elliptic curve
methods of factorization [J]. Mathematics of Computation,
1987,48(177): 143 —264.

[6] Okeya Katsuyuki, Sakurai Kouichi. Efficient elliptic curve
cryptosystems from a scalar multiplication algorithm with re-
covery of the y-coordinate on a Montgomery-form elliptic
curve[ C]// Proceedings of the Third International Workshop
on Cryptographic Hardware and Embedded Systems, Lecture
Notes in Computer Science. Springer-Verlag, 2001, 2162: 126
—141.

[7] Kocher P C. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS and other systems [ C]//Advances in
Cryptology—CRYPTO96, Lecture Notes in Computer Sci-
ences. Springer-Verlag, 1996: 104 —113.

[8] Kocher P C, Jaffe J, Jun B. Differential power analysis[ C]//
Advances in Cryptology—CRYPTO99, Lecture Notes in
Computer Sciences. Springer-Verlag, 1999: 388 —397.

[9] Chevallier-Mames Benoit, Ciet Mathieu, Joye Marc. Low-cost
solutions for preventing simple side-channel analysis: side-
channel atomicity [J]. IEEE Transactions on Computers,
2004, 53(6): 760 —768.

[10] Knuth Donald E. The art of computer programming: funda-
mental algorithms [ M]. Addison-Wesley, 1981.
[11] Dimitrov Vassil, Imbert Laurent, Mishra Pradeep Kumar. Ef-



32 Liu Shuanggen, and Hu Yupu

ficient and secure elliptic curve point multiplication using Security, Lecture Notes in Computer Sciences. Springer-Ver-
double-base chains [ C]//11th International Conference on lag, 2005, 3788: 59 —78.

the Theory and Application of Cryptology and Information

ETHERMEgRELEHEREREREE
XA AT

(' BEETFHERFHANRLEZLEARFTRELELRE, B 710071)
(P I R F I AUE & TSR, &g 330022)

WE:ATHRRAME X FEAGAZEE BT AR ZAGRERLE ZF A A TRA L
FoiE Heg sk ik, T A AR AT S . W, B E— A B E mE AKX P S F ek
b TR KR GAF BRI R 02 . sF T RE A 160 Hodk oy 5, 4ok ik 4k K B 4 260 B AULE &
1 719Kk kB H. Aok mik bt K E A 280 ~ 260 AF, i 47472 i A S-S Sk 2 & L3 % 26% ~31%
Yo NAF Skt 16% ~22% , b 4-NAF fik b 7% ~13% , vk B 7 54569 75 sk A 4% H ki B 1% ~8%.
KER AR E R A R Aok AT F R

R E 425 TP301



