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Abstract: A model suitable for describing the mechanical
response of thin elastic objects is proposed to simulate the
deformation of guide wires in minimally invasive interventions.
The main objective of this simulation is to provide doctors an
opportunity to rehearse the surgery and select an optimal
operation plan before the real surgery. In this model the guide
wire is discretized with the multi-body representation and its
elastic energy derivate from elastic theory is a polynomial
function of the nodal displacements. The vascular structure is
represented by a tetrahedron mesh extended from the triangular
mesh of the artery, which can be extracted from the patient’s CT
image data. The model applies the energy decline process of the
conjugate gradient method to the deformation simulation of the
guide wire. Experimental results show that the polynomial
relationship between elastic energy and nodal displacements
tremendously simplifies the evaluation of the conjugate gradient
method and significantly improves the model’s efficiency.
Compared with models depending on an explicit scheme for
evaluation, the new model is not only non-conditionally stable but
also more efficient. The model can be applied to the real-time
simulation of guide wire in a vascular structure.

Key words: deformable model; finite element method; real-time
simulation; guide wire

inimally invasive surgery has radically changed tradi-
Mtional surgical techniques. It has many advantages over
conventional surgery in many respects. But minimally inva-
sive interventions require strict training of the interventer. In
these interventions, a guide wire needs to be manipulated un-
der fluoroscopic guidance. A novice surgeon must practice for
a long time to obtain such ability. For this reason, there is a
great interest in developing guide wire simulation software to
provide a comprehensive training system as well as a useful
means to obtain pre-operative knowledge of the undergoing
intervention.

Many techniques have been investigated by different
groups to simulate the deformation of thin solid objects. A
spline animated by continuous mechanics with the Lagrangian
formalism was proposed by Lenoir et al'". LeDuc introduced
a model with “home springs” derived from the mass-spring
model' in which springs are connected along the thread. The
fact that strength, bending and torsion behaviors are not con-
sidered makes them difficult to apply in our situation. Physi-
cally based models were also proposed to introduce these
kinds of behavior through different representations. Konings
et al. ' proposed to minimize only the bending energy of the
guide wire-artery wall system by a discrete method. Cotin et
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al. ' defined a model of guide wire and a patient-specific ar-
tery representation using an incremental FEM with substruc-
tures analysis. Guilloux et al. ' introduced a virtual environ-
ment dedicated to the simulation of the guide wire navigation
in the vasculature considering its physical properties. Cao et
al. ' proposed a Cosserat rod element approach for three-di-
mensional nonlinear dynamics of slender structures and Pai'”
introduced the Cosserat model into the interactive simulation
of thin solids.

Unfortunately, the existing models based on spring meshes
or continuum-mechanics are either inaccurate or inefficient
for interactive simulation. None of the techniques for physi-
cally based modeling is well suited for the task of real-time
simulation of the guide wire inside arteries. The objective of
this paper is to develop an efficient and robust deformable
model based on the elastic theory and the FEM for the real-
time simulation of the guide wire inside arteries.

1 Guide Wire’s FEM model

Following the multi-body representation'™ the guide wire is
discretized as a chain of small and elastic cylindrical seg-
ments. Each one is connected to its neighbors at joints known
as nodes. The small cylindrical segment is also called the
beam element. Two successive beam elements form one bend
element (see Fig. 1). With these elements we can evaluate the
deformation energy and the elastic force of the structure.

(a) (b) (e)

Fig.1 Different kinds of elements and an element chain.
(a) Beam element; (b) Bend element; (¢) Wire model

1.1 Stretch modeling

The beam element works as a stiff spring. When stretched
or compressed, it generates elastic forces on its nodes. The
force is in the direction of the axis of the beam element and
its magnitude is usually decided by Hooke’s law:

fi=k(r-r,) (1)
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where r and r, are the current and the original lengths of the X, 1o
beam element, respectively. To simplify the expression, we x,={x b fi={fi\, B =[-21 I I (8)
use the following vector and matrix symbols: x, 7
b
x .
xs:{ 0}’ fg:{j{}’ B.=[-1 1] (2) We obtain
xl s
fy =ka:Bbxb 9)

where x,, and x, are the three-dimensional position vectors of
the two nodes of the element, f.” and f,' are the elastic forces
applied to the two nodes, I is a 3 x3 identity matrix, x_ and f,
are six-dimensional vectors and B is a 3 x6 constant matrix.
We use the following vector equation to evaluate the force
vector:

_ }i( V x;rB;rths B rO)B;rBsxs
J/x!B!Bx,

Because the square root appears in the equation, the force is
not a polynomial function of the nodal position, which will
cause great difficulty in the evaluation of our final equation.
Therefore, we use a different model leading to a polynomial
function of the nodal position, which is one of the highlights
in this paper.

[ 3

f’s :ks(rz _r(z))B;r(xl _xO) =

k(x'B'Bx, -r))B'B.x, (4)

where k. =k/(2r;). This time it is just a cubic function of
the nodal position. When stretch or compression is small
(That is the case of the deformation of a strand like object,
| r— T, \<<r0), Eq. (4) approximates Eq. (3). The deforma-
tion energy W, can be obtained by the following integral:

= k(x!BBx -1’
V‘/S - J fsdxs - s( s s s s 0)
0 4

)

1.2 Bend modeling

When the element bends, bend forces will be generated to
resist this deformation. As the beam element is almost incom-
pressible, we can consider that the length of the beam element
is invariant. The bend angle must also be small (see Fig.2),
since the length of the beam element is small enough. We
have the following approximate model:

£

=tk fi=fi= L ®

As the bend angle « is small enough, it can be approxi-
mately evaluated by

(7

. =2asin( |x, +x, -2x, /2)z |x, +x, -2x, |

Ty

Ty

Let

Fig.2 A bend element generating elastic force

where k, = k,/r,. It is a linear function of a nodal position.
Then the bend energy is a quadric function of the nodal posi-
tion:

kX, BB,x,

Wy=""5—"" (10)

1.3 Elements integration

After obtaining the equation of the deformation energy of
each element, we try to obtain the energy equation of the
whole object by integrating all elements together. Let

Xy
x=! LG =10..01,,0.0), G,=[0..01,,0..0]
X
(1D
where x,, ..., x,_, are the position vectors of all nodes, G' and

G| are the selection matrices for the i-th beam element and
the j-th bend element, respectively. The matrix G' consists of
n submatrices of 6 x6. Only the i-th submatrix is an identity
matrix; the others are zero matrices. The structure of matrix
G| is similar to that of G', but its submatrix dimension is 9 x
9. We obtain

k, k
W, = Z*(xTAx -+ 7thTx (12)
where

n=2 n-3

A = ;(GQ)TBZBSGL, T = ES(G{;)TBZBbG{; (13)
i= i=

1.4 Twist consideration

A thorough twist model is complicated and difficult to im-
plement in a real-time simulation algorithm. So we develop
an approximate model that can satisfy the basic clinical de-
mands. The configuration of a beam element can be described
by its nodal position and a coordinate frame of “directions”
attached to the element (see Fig. 3). While one beam can
move in its nodal position, it can also rotate round its axial,
which causes twists between connected beams. We can map
the directions of a local coordinate frame of one beam to its
neighbor beam’s coordinate frame to calculate the twist angle
at the connecting node (A@ in Fig. 3 is the angle between the
two x axes).

When there is a twist, there is torsion passing the connect-
ing node:

T=kAb (14)

As a twist just changes A@ and has nothing to do with the
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Fig.3 The local coordinate frame (x, y, z) mapped to its
neighbor’s coordinate (x',y’, z")

nodal position, we can separate a guide wire’s deformation in
shape from that of a twist. The torsion equilibrium for each
beam of the guide wire can be established.

k(A0 —A0) =T, (15)

where A6,,, and A@, are twist angles at the two nodes of the
i-th beam element of the guide wire and T is the external tor-
sion applied to that beam element. As Ag, is zero (Node O is
the beginning of the beam chain and there is no twist at this
node), we can calculate the twist angles one by one with Eq.
(15). These angles represent a twist configuration of the
guide wire.

1.5 Vascular structure representation

The vascular structure is originally represented by a 3-D
description defined by a triangular mesh extracted from the
CT data of a patient. This mesh just represents the inner sur-
face of the artery wall. We try to extend this surface mesh to
a tetrahedron mesh by converting each triangle element into a
tetrahedron element. For each triangle element, we find its
center point and move it for a given distance along the direc-
tion of the normal of the triangle to a point out of the artery.
This point and the three vertexes of the triangle form a tetra-
hedron. The new point called the static node, which never
moves, works as a home retractor trying to restore the triangle
back to its initial position. This makes the artery seem to rest
on the background of the soft tissue that tries to hold the ar-
tery in place. That is the case in the real human body. Be-
cause the new point’s position is known and never changes, it
does not introduce any additional computational complexity.
With the tetrahedron mesh we can build an FEM model of the
artery. As displacements of the artery remain quite small, a
linear FEM model is appropriate for artery modeling, which
remarkably simplifies the question:

Lo+
W, =7xaKxa, [, =Kx, (16)
where W, is the deformation energy of the artery, f, is the
elastic force vector, K is the stiffness matrix, and x, is the
nodal displacement vector.

1.6 Guide wire’s deformation simulation

According to the Newtonian law of motion the force equi-
librium for each node of the guide wire can be established:
d’x . dx
M7 +DE +f(x) me

4 (17

where M is the mass matrix, D is the damping matrix, f(x) is
the elastic force, and f, is the external force. Usually the ex-

ternal force includes two parts: the known external load and
the contact force f,. The contact force on a guide wire node is
in the direction of the normal of the contacted triangle of the
artery and its magnitude is decided by f, = k.d, where d is the
depth of the node penetrating into the artery wall and k_ the
contact stiffness coefficient. In order to solve Eq. (17), two
different forms applying Euler’s method have been proposed
to discretize time'™'” . However, the stability of these approa-
ches largely depends on the selection of an appropriate time
step. A small time step is necessary to lead to a stable solu-
tion which means a high computational cost, since we have to
finish the update of the model within one time step. As a re-
sult, these kinds of methods are not suitable for real-time
simulation. Consequently, we suggest a new method based on
the process of potential energy dissipation in viscoelastic
solid.

The potential energy of an elastic body includes two parts:
the elastic deformation energy and the potential energy of ex-
ternal forces. In our case, this energy is a polynomial func-
tion of the nodal position. Considering (12), we have

+  kIx"Ax-71? kx'Tx-flx
W(x) =W, -f x= 1 + > (18)

The composite force vector applied to nodes can be ob-
tained by the derivation of the potential energy with respect
to the nodal position.

fo == VW(x) = -f(x) +f,,

If the composite force is zero, the model is in a state of
static equilibrium. If not zero, the model is in an unstable
state and will deform to its final stable configuration of a
state of static equilibrium. This deformation process will take
some time depending on the viscosity of the model. If the
model does not have any viscosity, the model will immediate-
ly fall to the final stable configuration without any delay. If it
has some viscosity, the model will gradually deform to the fi-
nal configuration and dissipate its potential energy step by
step. We try to discretize this deformation process with a non-
linear conjugate gradient method. Usually the conjugate meth-
od is used for the evaluation of the final stable configuration,
but here we also use its middle results to simulate the whole
deformation process. First we compute an energy gradient and
decide on a displacement direction also known as the search
direction. We can calculate this search direction by the fol-
lowing recursion'':

— 8
P =
¢ { -8, +BP,_,

(19)

€=t el
k> P

(20)

where g, and g, , are the energy gradients at current time f,
and last time ¢, ,, and P, and P, , are the current and last
search directions. Then

X, =X, +AP, (21)

where x, is the current known configuration at time ¢,, x,,, is
the next unknown configuration at time #,,,, and A is an un-
known quantity for evaluation.

Substituting Eq. (21) into Eq. (18), we obtain

W) =a, At +ax’ +a,)” +a, ) +a, (22)
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where

_k(PAP)’

a,

4
k.x'AP _P'AP,
a, = R S
kx'A(x,P' +2P,x")AP, kP'TP,
a, = +

2 2
a, :ksszxkaAPk + kbeTvTPk _feTmPk

So the potential energy is a polynomial function of A. We
can find the minimal energy point by solving the following
equation:

dw

== =4a,)’ +3a,A’ +2a,A +a, =0

di (23)

After obtaining A, we can compute x, ,, by Eq. (21).

Repeat this procedure till the final stable configuration is
attained or approached. Because the conjugate method is non-
conditionally convergent and stable, this iterated process must
also work. As the model evolves to a configuration with mini-
mal energy during each iteration, it is also an efficient itera-
tion. That means the model will quickly converge to a stable
configuration. Here, we assume that the process of each itera-
tion takes the same period of time (time step 7) that charac-
terizes the viscosity of the model. Experimental results show
that a range from 1 to 10 ms of 7 can result in a desirable
simulation effect.

Analysis of the conjugate method shows that the middle re-
sults of the conjugate method are different from the results of
the explicit or the semi-implicit Euler method""”, but the final
stable results of these methods are the same. Despite the
difference in middle results, the new method’s stability and
high efficiency prove of high value in real-time simulation. In
the case of real-time surgery simulation, stability and efficien-
cy are more important than fidelity''. So the significance of
the method in real-time surgery simulation is considerable.

2 Results

Our method is tested on a guide wire inserted into an artifi-
cial tube and an artery segment reconstructed from the CT da-
ta of a patient. We also simulate the deformation of a guide
wire deformed by gravity with our method.

A guide wire (composed of 20 beam elements, element
length: 2 mm, element weight: 0.2 g, k, =100 N/m, k, = 10"
N/m’) with its left terminal fixed is deformed by gravity
from its initial horizontal configuration to the final stable
configuration (see Fig.4). With our method using a time step
of 1 ms we can simulate this process stably as well as effi-
ciently. When the simulation is implemented with the explicit

method, we must use a time step as short as 1 us to keep the
computation stable that leads to a high computational cost
(see Tab.1).

(a) (b) (o) (d)
Fig.4 Simulation of the deformation of a guide wire de-
formed by gravity. (a) t=0.5s;(b) t=1s;(c) t=2s; t=45s

Fig. 5 illustrates the simulation of a guide wire interacting
with a tube segment composed of 1 160 triangles. The guide
wire contains 20 beam elements and its parameters are k, = 10°
N/m and k, =10” N/m’. The top image represents the initial
configuration. The bottom is the result of the deformation.

e

s

Fig.5 A guide wire interacting with a tube segment

Fig. 6 illustrates the simulation of a guide wire inserted
into a real human artery segment model of 5 472 elements
extracted from a CT data set of a patient.

Fig.6 Simulation of a guide wire inserted into a real hu-
man artery segment model

Based on the experiment shown in Fig. 4, some compari-
sons between our method and the explicit method are shown
in Tab. 1.

Computational time in the table is the CPU time con-
sumed in each method for the simulation of the deformation
of a one-second period of the model.

Tab.1 Comparison between our model and the other models

Method Model’s parameters Time step/ms  Computational time/ms Stability
o thod 20 beam elements | 65 N ditional stab]
ur metho ky =100 N/m on-conditional stable
k, =10""N/m’?

Explicit method Element length: 2 mm

Element weight: 0.2 g

1073

14 741 Conditional stable
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3 Conclusion

We have presented the theory and implementation of a
new method for the simulation of a guide wire passing
through a vasculature. The model attempts to simulate the
behavior of a guide wire efficiently as well as stably by in-
troducing the conjugate gradient method to discretize the
deformation of viscoelastic body. Experimental results show
that the method improves simulation performance signifi-
cantly in stability as well as efficiency. Despite the demon-
strated advantages, there are still some researches needed in
the future. The most urgent one might be to take twist ac-
tion into full consideration, which is also the objective of
our future research.
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