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Abstract: The feasibility of using an ANN method to predict the
mercury emission and speciation in the flue gas of a power station
under un-tested combustion/operational conditions is evaluated.
Based on existing field testing datasets for the emissions of three
utility boilers, a 3-layer back-propagation network is applied to
predict the mercury speciation at the stack. The whole prediction
procedure includes: collection of data, structuring an artificial
neural network ( ANN) model, training process and error
evaluation. A total of 59 parameters of coal and ash analyses and
power plant operating conditions are treated as input variables,
and the actual mercury emissions and their speciation data are
used to supervise the training process and verify the performance
of prediction modeling. The precision of model prediction (root-
mean-square error is 0. 8 pg/ Nm® for elemental mercury and 0. 9
g/ Nm® for total mercury) is acceptable since the spikes of semi-
mercury continuous emission monitor ( SCEM ) with wet
conversion modules are taken into consideration.
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recent report by the Environmental Protection Agency

(EPA) on emissions of hazardous air pollutants by e-
lectric utilities predicts that emissions of air toxics from
coal-fired utilities will increase by 10% to 30% by the year
2010"". Mercury from coal-fired utilities is identified as the
most hazardous air pollutant of the greatest potential public
health concern. The U. S. announced the clear skies initiative
in 2002, which targeted the reduction of NO_, SO, and mer-
cury by 70% by 2018,

Mercury in the flue gas usually exists in three forms"
oxidized (Hg[2 +]), elemental (Hg[0]) and particle-bound
(Hg[P]). Total mercury concentration in flue gas is indica-
ted as Hg[ T]. Due to its high volatility, mercury usually
exists in a vapour form. Oxidized mercury is soluble in wa-
ter and can be removed in wet scrubbers'”'. On the other
hand, elemental mercury usually escapes emission control
equipment and is emitted into the atmosphere.

Artificial neural network ( ANN) modeling is a technique
that may offer advantages in the modeling process that fol-
lows nonlinear relationships'”'. ANN modeling uses histori-
cal data to “learn” the patterns that occur between given in-
puts and outputs of the model, and then simulates the out-
puts under non-tested conditions. The use of neural networks
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applied to air pollution is a trend of increasing interest'*” .

The method tends to be a “blackbox” method, where the
equations describing complex situations are not known.
Therefore, an ANN may be suitable for predicting mercury
emissions and for the power generation where the fundamen-
tal transformation mechanism is not fully understood and the
irregular effects on the results are too complex to deal with
by using traditional data mining theory.

In this paper, the feasibility of using an ANN to predict
the mercury emissions in the flue gas of a power station un-
der un-tested combustion/operational conditions is evaluated
using a 3-layer back-propagation network based on the exist-
ing field data at the stack. Although EERC developed a
method based on ANN to estimate mercury speciation in flue
gas for individual power plants'™, the interest of this paper is
focused on the prediction of mercury in a time series accord-
ing to the changes in complex multifactors.

1 Mercury Measurement for Utility Boiler

There are three primary forms of mercury emission from
coal-fired boilers of power station: gaseous elemental mercu-
ry (Hg[0]), gaseous oxidized mercury, and particle bound
mercury (Hg[P]). Most oxidized mercury in flue gas is in
the divalent state (Hg[2 + ]). Oxidized mercury is soluble
and has a tendency to be adsorbed by a particulate matter.
The instrumentation used in this study is a semi-mercury
continuous emission monitor ( SCEM). The SCEM used is
the Sir Galahad from PS Analytical. It uses a gold trap to ex-
tract the mercury from the flue gas and measures the mercu-
ry concentration by an atomic fluorescence detector. The
ontario hydro method (OHM), an ASTM standard method
for measuring and speciating mercury in utilities flue gas, is
used to verify the SCEM reading. The mercury content in
coal and ash samples is analyzed by the leco advanced mer-
cury analyzer 254 following the ASTM direct combustion
method. The AMA 254 has a detection limit of 0. 01 ng and
a detection range of 0. 05 to 600 ng.

2 Determination of ANN Topology Architecture
and Selection of Impact Parameters

The ANN technique uniquely uses input and output data
sets and directly “learns” the patterns inherent in the data.
The key fact of an ANN model which makes it desirable is
the ability to learn patterns from a data set. The ability of an
ANN model is derived from the power of various intercon-
nected processing units, “neuron-type” units, known as per-
ceptrons, to function through pattern recognition in a data
set. Once the perceptrons are interconnected with each other,
a powerful processing technique with the ability to learn and
self-organize from an extensive data set is established. The
topology approach is used to construct the studied ANN
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model, with input layer, output layer and hidden layer de-
sign. The topology design requires a number of model fac-
tors, including the type of learning, the number of hidden
layers, the number of neurons in the hidden layers, and the
number of neurons in the input and output layers. The archi-
tecture of topology used in this study is shown in Fig. 1. It
consists of multilayer perceptrons with 59 input neurons
which correspond to 59 impact parameters, one hidden layer
with 200 neurons, and two output neurons for predicting re-
sults. The functions that govern weighting and activation of
the perceptrons are the activation functions, which are logis-
tic [1/(1 +€")] in all the cases.

Input layer Hidden layer Output layer
2 neurons

59 neurons 150 neurons

Fig.1 Architecture of ANN topology structure used in mer-
cury prediction

Two different datasets are used in ANN modeling. One is
used to train the neural network ( training dataset, 50% of
the cases) and the other one is used to validate the predic-
tion model and calculate the root-mean-square (RMS) value
(testing dataset, 50% of the cases) after the training is fin-
ished. A comparison between the RMS values for two data-
sets obtained for the three full boilers has been made. An
excellent match is achieved for all the cases. The selected
impact parameters for the ANN model to predict mercury at
the stack are listed in Tab. 1. The total input vector datasets
are divided into three groups: () Coal-fired boiler configura-
tion, (2) Coal and ash properties and 3) Plant operation in-
formation from power plants. Three units with different con-
figurations of the boiler and the air pollution control de-
vices, as listed in Tab. 2, are chosen to perform the training
and testing procedures. The SCEM system is located at the
stack and it monitors the mercury emissions and their specia-
tion for two weeks continuously. The sampling frequency is
5 min/point. The hourly-averaged mercury data are treated
as the satisfactory output values and are used to supervise
the training process.

Tab.1 Impact parameters selected in ANN modeling
Coal and ash Coal-fired boiler Plant operation
properties configuration information
Operation data such as

Data from the ap- Type and configuration

power load, coal consump-

proximate, ultlmte of FGD, ESR, SCR and tion, SCR, APH tempera-
and XRF analysis of combustor in  power .

ture, and concentrations of
coal and ash plants

SO, and NO,

Tab.2 Configuration of tested units
Unit 1 Unit 2

Unit configuration Unit 3

Combustor type Tangential fire Opposed wall fire Opposed wall fire

Particulate control Cold ESP Cold ESP Cold ESP
NO, control SCR SCR No
SO, control No FGD FGD

3 ANN Training Process and Results

The learning process is divided into three phases, inclu-
ding training, testing and prediction. Data consisting of input
vectors coupled with matched output values are fed into the
neural network in the first two phases, in this study, totals of
100, 180, 145 input sample vectors and hourly-averaged
mercury data are involved in the training computation for
these three units, respectively. A subsequent prediction phase
is then used to assess the forecasting ability of the model.
Data sets which are used in the prediction phase are collect-
ed in another 5 to 8 day’s field testing. It also consists of
100, 180, 145 impact vectors and hourly averaged mercury
data which are isolated from the data sets in the training
phase. This ensures that each phase will be performed using
data it has never seen before.

The general back-propagation ( GBP) technique is de-
ployed for the training and testing processes. The network
learns by comparing the model output with actual outputs,
and then makes adjustments to the hidden layers in a “back-
ward propagation” to allow the ANN model to learn how to
predict the output more effectively.

The standard back-propagation method is based on the
following popular gradient descent learning'”':

Aw,(n) =n6,(n)x;(n) (1)

where Aw,(n) is the correction applied to the weight w; 7
is the learning rate parameter; §,(n) is the local gradient
which points to the required changes in network weights;
and x,(n) is the output of neuron j at iteration n. A slower
learning rate is needed for this complex input situation.
Here we set it as 0. 01. The momentum learning method is
an improvement on the gradient descent search technique. In
the momentum learning method, the equation to update the
weights becomes

Aw,(n) =n8,(n)x;(n) +alwy(n) —w,(n-1)] (2)

where « is the momentum constant, and here we choose it as
0. 005. The momentum rate is analogous to the momentum in
physics. A high momentum rate is used to give the network a
higher inertia or tendency to proceed in a straight direction.

Using the maximum and minimum values found within
each data channel of the network, all the input and output
data are normalized. Using a reverse process, the output re-
sults produced by the network are then denormalized to pro-
vide the actual output values. The train continues until the
number of learning stages reaches a specified value or the
error of the model output compared with the actual output
reaches a desirable minimum value.

The control statistical parameters used are the coefficient of
multiple determination (R,) and the root mean square error
(RMSE). R, indicates the proportion of the variation of de-
pendent variables ( outputs) over the variation of the inde-
pendent variables (inputs). The R, value of 1.0 indicates a
perfect model fit. The RMSE provides useable statistical in-
formation to verify model forecasts because the smaller the
RMSE, the higher the precision of model prediction. The error
is expressed by the RMS value, which can be calculated by
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E=—1¥ Yl -0, (3)

where E is the RMS error; ¢ is the network output (target)
and o represents the desirable output vectors over all patterns
(p).

In this study, the training dataset including 100, 180, 145
input vectors and hourly-averaged mercury speciation data
for units 1,2 and 3, respectively, are used to train the ANN
model. With the completion of the training and testing pha-
ses of the ANN model, the comparison between the model
prediction and real measurement values in a time series is
shown in Fig. 2 for individual testing units. In these figures,
some unexpected spikes are found in the time series of
measurement of mercury speciation which are normally sus-
pected to relate to the SCEM with the wet conversion mod-
ule. Fortunately, the prediction results show that the ANN
model can tolerate the systematic error in the training
process and correct these spike data. The R,(model fit) for
gaseous elemental mercury is 0. 856, and for gaseous total
mercury it is 0. 93. The RMS error is 0. 8 pg/Nm® for gase-
ous elemental mercury and 0.9 pg/Nm’ for gaseous total
mercury, respectively. The normalized prediction and meas-
urement values are summarized in the same plotting as
shown in Fig. 3, most of the data are close to the line with a
slope of 1.0 (y =x). This is much more clear to compare
the difference between prediction and measurement. For
some values with high actual measurement, the deviation re-
sults from the spike of the wet SCEM system.
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Fig.2 Comparison of the mercury concentration between
actual value and prediction. (a) Unit 1;(b) Unit 2;(c) Unit 3
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Fig.3 Plot of normalized mercury emission obtained with
ANN modeling vs. actual measurement

4 Conclusion

The feasibility of using an artificial neural network to pre-
dict mercury emissions at a stack of a utility boiler is inves-
tigated, and positive conclusions can be drawn as follows:
Three layers of the back-propagation network can predict
hourly-averaged mercury emissions with acceptable discrep-
ancies. Comprehensive 59 impact parameters on mercury e-
missions are considered in the prediction process. The accu-
racy of the modeling strongly depends on the selection and
collection of these impact parameters. The R,(model fit) of
this model for gaseous elemental mercury is 0. 856, and for
gaseous total mercury is 0. 93. The precision of model pre-
diction (RMS error is 0.8 pg/Nm’ for gaseous elemental
mercury and 0.9 pg/Nm® for gaseous total mercury) sug-
gests that ANN does hold promise for predicting mercury e-
missions and their speciation if the spikes of mercury SCEM
with the wet conversion module are taken into considera-
tion.
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