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Abstract: The ordered weighted geometric averaging ( OWGA)
operator is extended to accommodate uncertain conditions where
all input arguments take the forms of interval numbers. First, a
possibility degree formula for the comparison between interval
numbers is introduced. It is proved that the introduced formula is
equivalent to the existing formulae, and also some desired
properties of the possibility degree is presented. Secondly, the
uncertain OWGA operator is investigated in which the associated
weighting parameters cannot be specified, but value ranges can be
obtained and the associated aggregated values of an uncertain
OWGA operator are known. A linear objective-programming
model is established; by solving this model, the associated
weights vector of an uncertain OWGA operator can be
determined, and also the estimated aggregated values of the
alternatives can be obtained. Then the alternatives can be ranked
by the comparison of the estimated aggregated values using the
possibility degree formula. Finally, a numerical example is given
to show the feasibility and effectiveness of the developed
method.
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he ordered weighted averaging ( OWA) operator intro-
duced by Yager'' provides for aggregation lying be-
tween the max and the min operators, and has received in-
creasing attention'' ™' since its appearance. The OWA opera-
tor has also been extended to many other forms, such as the
induced ordered weighted averaging (IOWA) operator'®”,
the generalized ordered weighted averaging( GOWA) opera-
1 the weighted ordered weighted averaging ( WOWA)
operator'”, the uncertain ordered weighted averaging
(UOWA) operator'”, and the linguistic ordered weighted
averaging ( LOWA) operator'" " . For a decision making
problem, in the aggregation phase, another operator called
the ordered weighted geometric averaging (OWGA) opera-
tor'”™ is also an effective tool for aggregation information.
In many situations, the OWGA operator reflects the fuzzy
majority calculating its weighting vector by means of a
fuzzy linguistic quantifier according to Yager’s ideas'", but
in a real situation, the associated weighting parameters can-
not be specified. Xu'"' proposed an approach to determine
the weights by the OWGA operator, but it only deals with
the input arguments in the form of exact number values. But
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in a real situation, people only provide their preference infor-
mation denoted by interval values. Therefore, it is necessary
to pay attention to this issue. The aim of this paper is to in-
vestigate the uncertain OWGA operator in which the associ-
ated weight information is incompletely known, and each in-
put argument is given in the form of an interval of numerical
values.

1 Formulae for Comparing Interval Numbers

Definition 1'""  Let a = [a", ¢"] = {x | d" <x=<d"},
then a is called an interval number. If 0 <a"“ <a", then a is
called a positive interval number. Especially, a is a real
number if a" =a".

Let N={1,2, ...,
numbers.

Definition 2 Let a =[a", a"] and b = [b", b"] be two
positive interval numbers, and A =0, k=0, then

@ a =b, if and only if " =b" and a" = b".

n}, and let (2 be the set of all interval

@a+b=[d"+b",a" +b"].

® Aa=[Ad", Aa"]. Especially, if A =0, then Aa =0.
a = [(aL)k (bL)k]

® a-b=[d"b",a"b"].
a

© b~ =la" [bu’b ] [bu’b

Definition 3" Let a=[da", a"] and b =[b", b"], and

let len(a) =a” - a" and len (b) = b" - b"
of possibility of @=b is defined as

, then the degree

pla=b) = min{max[

len(a) +len(b) 0] }

Definition 4 Let a =[a", a"] and b = [b", b"], and let
len(a) =a" — a" and len(d) =b" - b"; then win(a) =a" +
a’, win(b) =b" + b". Then the degree of possibility of a=
b is defined as

p(a=h) :nﬂn{max[%(%+l),0],l} 2)

Similarly, the degree of possibility of b=a is defined as

+1),0],1} (3)

Theorem 1  Definition 3 is equivalent to definition 4;
that is, (1)<(2).

Proof p(a=b) =min{max [%(

1

p(b=a) :min{max[?(w

len(a) + len(b)

win(a) — win(b)
len(a) + len(b)
: ) 0 ] : } = min {max[ ; (1en(a)_+212n(b)) 0].1 }
_pt

min {max(m ) 1}. From definition 3 or
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definition 4, we can obtain the following results easily.

Theorem2 Let a=[da", a"],b=[b",b"],c=][c",
¢ ];then

Do<sp(a=b) <1.

@ p(a=b) =1, if and only if b’ <a".

® p(a=b) =0, if and only if a’<b".

@ p(a=b) +p(b=a) =1.Especially, p(a=a) :%.

® p(a=b) 2% if and only if a” + a"=b" + b". Espe-
cially, p(a=b) =%, if and only if a” +a" =b" + b".

©® p(a=b) 2% and p(b=¢) 2%, then p(a=¢) ;%.

Suppose that there are n input arguments a,(i e N) taking
the forms of interval numbers, and a, = [a,L, a}.J] (ieN).To
rank these arguments, we first compare each argument q,
with all arguments a,(j € N) by Egs. (3) and (4), and

pla,= a =
win(a,) —win(a;)
{max ( len(a,) +len(a,)

+1),0],1} jeN (4)

For simplicity, we let p, = p(a,=a;). Then we can con-
struct a complementary matrix as

Pu Pn -+ Pu
p- 1'721 1.722 1.72;1
Pu P -+ Pm

where p,=0,p, +p;, =1,p,=1/2 and i,je N.
Summing all the elements in each line of matrix P, we

have ,
= Zpu
Jj=1

Then we can rank the arguments a,(i € N) in descending
order in accordance with the value of p,, i e N.

2 Model to Determine the Weights

Definition 4" An uncertain OWGA operator of dimen-
sion is a mapping g: {2'—(2 that has an associated vector w =

n

ieN (5)

{w,,w,, ...,w,}", such that w, [0,1] and ) w, =1, Fur-
i=1

thermore, g(&,, &,, ..., a,) = H (b)" , where b, is the j-th
=l

largest of a,, and all of the @,(i € N) are interval numbers.

In this section, we shall give a programming model that
can be used to obtain the weights associated with the uncer-
tain OWGA operator by utilizing the given partial weight in-
formation and the arguments.

Given a collection of m samples( observations), each con-
sists of an n tuple of arguments (a,,, a,,, ..., a,,) and an as-
sociated aggregated value 5,, where @, = [ay, a, 1,5, = [s;,

5.1, k=1,2,...,m. And partial weight information is

7 J

a_isl,ZIBjalﬁ szl}

j=1 j=1 j=1

w = {{wl,wz,...,wn}T \OSa- sw <8 <1,

We need an uncertain OWGA operator, a weighing vector
w, such that for the entire collection of data we satisfy the
following conditions as faithfully as possible. g (a,,, a,,, ...,
a,) =5,,k=1,2,...,m. We can utilize Eq. (3) or Eq. (4)
to compare the k-th sample arguments a,,, i e N, and utilize
Eq. (5) to obtain p!, i e N. Then we can rank the argu-
ments of the k-th sample by b, b, ..., b,, in descending
order in accordance with the value of p(k), i e N. Using
these re-ordered arguments, we need to find a vector of the

uncertain OWGA weights w = {w,, w,, ..., w,}" such that
[Ty =5  k=12..m
j=l

that is ) .,
[T =5, [l =5 (6)
=1 =1

Since Eq. (6)is a non-linear form, it is difficult to obtain
the weighting vector w. We take the logarithm on both sides
of Eq. (5), then we can obtain

Y win(by) =lIns;, Y win(by) =Ins; (7)
j=1 J=1

In the real life, however, there always exit some differ-
ences; that is, Eq. (7)in general does not hold. Here, we in-
troduce the deviation elements e, (w) and e, (w);i.e., let

e = 3 wln(b) ~lns} ce =| 3 win(b) ~ns} | (8)
j= j=

To determine the vector of weights w = {w,, w,, ...,

w,}", we can construct the following multi-objective pro-
gramming( MOP) model:

min e; = | ¥ win(bl) ~Inst| kK =1,2,..m
i=1

n
. u
min e] = ‘ Y win(by) —Ins;
izl

s.t. O=so=sws8 <1

n

e

j= Jj=

Generally, all the objectives are fairly competitive and
there is no preference relationship among them; therefore,
the above model can be transformed into the following linear
goal programming problem:

min J = Y [(e) "+ (e) +(e) +(e)7]
k=1
s. t.
Y win(by) —1Ins; —(e;) "+ () = k=1,2,....m
j=1
Y win(by) —1Ins; —(e)) "+ (e)) = k=1,2,....,m
Jj=1

O0<a<w<p <

LYas<1Y8=1,

(e)*'=0,(e)) =0,(ef) (e)) =0 k=1,2,....m
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(e))*=0,(e) =0,(e) (V) =0 k=1,2,....m

where (¢;) * and (e;) "

variables of s;, respectively; (e;) " and (e;) "

are the upper and lower deviation
are the up-
per and lower deviation variables of s, , respectively.

By solving the model, we can obtain the vector of the un-
certain OWGA weights w = {w,, w,, ..., w,}".

3 Ilustrative Example

The samples of data are listed in Tab. 1. Each sample con-
sists of three arguments and the relevant aggregated value,
all having the forms of interval numbers. The known partial
weight information is 0. 2<w,<0.6,0.3<w,<0.5,0. 1<
w, <0.4.

Tab.1 Samples of data

Sample Argument values Aggregate value
1 [0.4,0.7], [0.2,0.5], [0.7,0.8] [0.3,0.7]
2 [0.3,0.4], [0.6,0.8], [0.3,0.5] [0.4,0.5]
3 [0.2,0.6], [0.3,0.4], [0.5,0.8] [0.3,0.6]
4 [0.5,0.8], [0.3,0.5], [0.3,0.4] [0.4,0.6]

Utilize Eq. (4) to compare the k-th sample of data, and
construct the complementary matrix P,,

0.5 0.833 0 0.5 0 0.333
Pl:[0.167 0.5 0 ],PZ:[ 1 05 1 ]
1 1 0.5 0.667 0 0.5
0.5 0.6 0.143 0.5 1 1
P3=[ 0.4 0.5 0 ],P4_[ 0 0.5 0.667]
0.857 1 0.5 0 0.333 0.5

By Eq. (5), we can obtain

pi" =1.333, pi’ =0.667, pi’ =2.5
p? =0.833, pi¥ =2.5, pi¥ =1.167
p\V =1.243, p¥ =0.9, p\’ =2.357
pP =25, pi¥ =1.167, pi¥ =0.833

Then we rank the k-th sample arguments a,,, a,,, a,, in

. . . k k
descending order in accordance with the values of p!*, pi¥,

(k) S A A
p; ,and we can obtain b,,, b,,, b,;.

b, =10.7,0.8], b, =[0.4,0.7], b, =[0.2,0.5]

b, =[0.6,0.8], b, =[0.3,0.5], b, =[0.3,0.4]

b, =10.5,0.8], b, =[0.2,0.6], b, =[0.3,0.4]
[

b, =[0.5,0.8], b, =[0.3,0.5], b, =[0.3,0.4]

Utilizing the LOP model, we have

minJ = ﬁ[(eb*+(eb‘+(ef)*+(ef) ]
S. t.
In(0. 7)w, +1In(0.4)w, +In(0. 2) w, —In(0.3) —
(e)" +(ey) =0
In(0. 8)w, +1In(0. 7) w, +In(0. 5)w, —In(0.7) -
(e/) " +(e))” =0
In(0. 6)w, +1n(0.3)w, +In(0. 3)w, —In(0.4) -

(&) " +(e) =0
In(0. 8) w, +1In(0. 5)w, +In(0. 4) w, —1In(0.5) -
()" +(e)) =0
In(0. 5)w, +1In(0. 2) w, + In(0. 3) w, — In(0. 3) -
()" +(ey) =0
In(0. 8) w, +1In(0. 6) w, +In(0. 4) w, — In(0. 6) -
(ef) " +(e)) =0
In(0. 5)w, +1In(0. 3) w, + In(0. 3) w, —In(0. 4) -
(e) " +(e) ™ =0
In(0. 8) w, +In(0. 5)w, +In(0. 4) w, —In(0. 6) —
(e)) " +(e)) =0
0.2=sw,;<0.6, 0.3<w,<0.5, 0.1sw,<0.4
(e;) =0, (e)) =0, (ef) (ef) =0 k=1,2,3,4
(e)) "=0, (e)) =0, (e))"(e)) =0  k=1,2,3,4
By solving the above model, we obtain the vector of the
uncertain OWGA weights:
w = {0.266,0.334,0.4}"

Therefore, we obtain the estimated aggregated values §, of
5, as follows:

$,=g(ay, ay, a;) =(Bn)0-266 X(BIZ)OJM(BB)O.A =
[0.352,0.634]

$, =8(ay, Gy, ay) = (521)0'266 X (522)0‘334 X (523)&4 =
[0.361,0.518]

§3 =8(ay, Gy, ay) = (531)0'266 X (2732)0'334 X (2733)0'4 =
[0.3,0.551]

8, =g(a41’ Ay a43) = (541)0-266 X (1;42)0'334 X (7743)0'4 =
[0.344,0. 518]

By Egs. (4) and (5), we can rank the estimated aggrega-
ted values, §, in descending order:

0.5 0.6219 0.6266 0.636
P 0.378 1 0.5 0.5343 0.5257
0.3734 0.4657 0.5 0.487 1
0.3640 0.4743 0.5129 0.5

p, =2.3845, p,=1.9318, p,=1.8262, p,=1.8512

§>8§,>8,>,
4 Conclusion

We have investigated the uncertain ordered weighted geo-
metric averaging( UOWGA) operator in which the associated
weighting parameters cannot be specified, but value ranges
can be obtained. Each input argument is given in the form
of an interval of numerical values, which develops the theory
of the OWA operator introduced by Yager. We introduce an
equivalent possibility degree formula for the comparison be-
tween interval numbers and study its properties. To deter-
mine the specified weights of the OWGA operator, we estab-
lish a linear objective-programming model. By solving this
model, we can not only obtain the weights but also can rank
the alternatives.
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