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Abstract: First, the main procedures and the distinctive features
of the most-obtuse-angle (MOA) row or column pivot rules are
introduced for achieving primal or dual feasibility in linear
programming. Then, two special auxiliary problems are
constructed to prove that each of the rules can be actually
considered as a simplex approach for solving the corresponding
auxiliary problem. In addition, the nested pricing rule is also
reviewed and its geometric interpretation is offered based on the
heuristic characterization of an optimal solution.
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Consider linear programming( LP) problems in the stand-
ard form:
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where A e R"™", ¢ e R", and b ¢ R" are assumed to be non-
zero(0 <m <n). We assume that rank (A) =m and ¢ is not
in the range space of A.

Since the simplex method for solving LP problems was
founded by Dantzig'"! in 1947, this topic has enjoyed consid-
erable interest by researchers in many fields. In 1954,
Lemke' developed the dual simplex method, so Dantzig’s
simplex method is also called the primal simplex method.

To create an initial primal( dual) feasible basis to get the
primal( dual) simplex algorithm started, one usually solves
some sort of “phase 1” problem to produce such a basis. In
Refs. [3 —4], Pan proposed several ratio-test-free rules for
phase 1, named the most-obtuse-angle( MOA) pivot rules, for
achieving primal ( dual) feasibility with neither an auxiliary
problem nor an artificial variable. Despite some instances of
cycling under such kinds of rules were given™, their compu-
tational performance is very favorable. In Ref. [6], Kober-
stein and Suhl reported computational results on some major
dual phase-1 methods for solving large-scale LP problems,
showing the superiority of the MOA rules over others.

On the other hand, great efforts were also made on pivot
rules for phase 2 to reduce the number of required iterations.
There are basically three types of selection rules: full pricing
rules'”™, finite rules"”™' and partial pricing rules"*'". Re-
cently, Pan reported computational results''”’ on a so-called
nested pricing rule with large-scale problems, exhibiting its
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remarkable success over major pivot rules commonly used in
practice, such as Dantzig’s original rule as well as the
steepest-edge rule and the Devex rule.

Why do the rules perform so fast? In this paper, we pres-
ent some fresh views on these developments. As usual, we
give the following notations: e, denotes the i-th coordinate
vector; its dimension is determined by the context. || - | re-
fers to the vector two-norm. Let B be the current basis and N
the associated nonbasis. Without confusion, we denote both
the basic( nonbasic) index set and the basis( nonbasis) by the
same notation. For instance, ¢, € R" is the vector consisting
of basic components of ¢, and ¢, € R"™" consists of its non-
basic components. Assume that B = {j,, j,, ..., j, }, where j,
is the index of the i-th basic variable. We denote this by N
=B 'N,b=B'b, and the nonbasic reduced costs may be
obtained by a so-called pricing operation:
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1 Fresh Views on the MOA Pivot Rules

Suppose that B is infeasible for both problem(1) and its
dual problem; that is, the row index set

I={i|b,<0,i=1,2,...,m}
and the column index set
J={jl¢ <0,jeN}

are nonempty. First, we describe the MOA pivot rules for
achieving primal and dual feasibility, respectively, in the fol-
lowing.

Pan’s proposal'” for achieving primal feasibility used the
row pivot rule in the dual simplex method to determine a
leaving index j,:

r=argmin {b, | i eI} (2)

and the MOA column pivot rule to determine an entering in-
dex g¢:

g =argmin {a, [jeJ(r)} (3)

where
J(ry2{jla,<0,jeN} (4)

Then update the basis correspondingly and complete one
iteration step. Such steps are repeated until either set I is
empty, implying achievement of primal feasibility, or other-
wise [ is nonempty but J(r) is empty. In the latter case, it
easily follows that problem (1) has no feasible solution.
Since there are a finite number of possible bases, the proce-
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dure would terminate in finite iterations if cycling does not
occur.

Pan’s dual phase-1 approach' used Dantzig’s column
pivot rule to determine an entering index g:

g =argmin {c, | jeJ) (5)

and the MOA row pivot rule to determine a leaving index
J:

r=argmax {a,

iel(q} (6)

where
I(g) 2{ila,>0,i=1,2,...,m} (7

Then update the basis correspondingly and repeat the
steps. If cycling does not occur, the procedure would termi-
nate at some step at either:

(D Set J is empty, implying achievement of dual feasibili-
ty; or

(2 J is nonempty but /( g) is empty, indicating dual infea-
sibility; that is, problem (1) has no optimal solution.

A distinctive feature of the rules above is the remarkable
simplicity. Neither ratio test nor the reduced cost( or the val-
ue of the basic variable) is required. Furthermore, it is clear
that monotone change in objective values and maintenance
of current primal and dual feasibilities cannot be guaranteed.

In the following, we show that each of them can be actu-
ally considered as a simplex approach for solving a special
phase-1 problem.

Theorem 1 Pan’s procedures are equivalent to those of
the simplex approach for solving corresponding auxiliary
problems.

Proof Apparently, we can obtain a primal feasible basic
solution to (1) by solving the following phase-1 problem:

min 0"x (8)

s.t. Ax =b x=0

It is easy to see that any basis of (8) is dually feasible and
the associated reduced costs are equal to 0, so we can direct-
ly apply the dual simplex method to (8). Let j. € B be the
current leaving index determined by Eq. (2) and assume that
J(r) defined by Eq. (4) is nonempty, then an entering index
can be determined by the min-ratio-test, i. e,

q:argmin{ Oa \je](r)}

I

For numerical stabilization, we certainly select ¢ such that
q=argmax{ |a,||jel(r)

or equivalently

g=argmin{a, [je J(r)}

The procedure is just the same as Pan’s MOA column piv-
ot rule for achieving primal feasibility.

Similarly, we can also see that Pan’s dual phase-1 ap-
proach is equivalent to applying the primal simplex method
to the homogeneous LP problem (9).

min ¢"x 9

s.t. Ax =0 x=0

The proof is completed.

2  Geometric Interpretation of the Nested Pricing
Rule

Recently, Pan presented a successful nested pricing'”"*' in

the primal simplex algorithm for solving problem(1). The
new rule and the very famous and efficient Devex rule are
implemented within MINOS 5. 51. In over 80 large-scale
problems( consisting of the 48 largest Netlib problems, all of
the 16 Kennington problems, and the 17 largest BPMPD
problems), the nested pricing rule outperformed the Devex
rule with a total time ratio of 5. 73. First, we introduce the
nested pricing rule in the following.

Nested pricing rule in simplex Let B be the current
feasible basis. Let (J,,J,) be a partition of N.

@ If index set J, & {j | ¢; <0,jeJ,} is nonempty, select
an entering index ¢ such that

g =argmin{c, |jeJ } (10)

or else

@ If redefined index set J, & {; | ¢; <0,jeJ,} is non-
empty, select an entering index ¢ by (10); or else

) Declare optimality.

If optimality is not declared, the partition of the next N is
formed by setting J, =J, \q and then J, = N\J,. For the first
iteration, J, is set to N and J, to empty.

We will describe the geometric interpretation of the nested
pricing rule as follows. For convenience, we suppose B = {1,
2, ...,m}. The canonical form of (1) corresponding to cur-
rent basis B is

min ¢;b +¢,, x, (11)
s.t.x, +Nx, =b X, x,=0

It is equivalent to
min ¢, X, (12)
s.t. —Nxy,=-b x,=0

The quantity ¢,/ || ¢, || (j € N)is just the cosine of the an-
gle formed between e;_, (the constraint x;=0) and ¢,, and
¢; is the pivoting index of variable x; defined in Ref. [12].
According to the plausible characterization of the optimal so-
lution'”, the variable with a lower pivoting index is prior to
an entering basis. Dantzig’s column rule is to select the min-
imum one just at any current iteration, not considering the
previous iterations. However, the nested pricing rule is to se-
lect the minimum one in the set J,. In fact, each index j e J,
indicates that the angle formed between e;_, (the constraint
x;=0) and the reduced gradient always remains obtuse at
some previous successive iterations. Therefore, it is reasona-
ble to focus on such indices. This may explain the success of
the new rule.

References

[1] Dantzig G B. Programming in a linear structure[J]. Econo-



126

Hu Jianfeng, and Pan Pingqi

metrica, 1949,17:73 —74.

[2] Lemke C E. The dual method of solving the linear program-
ming problems [ J]. Naval Research Logistics Quarterly,
1954,1(1):36 —47.

[3] Pan P Q. Achieving primal feasibility under the dual pivoting
rule[ J]. Journal of Information and Optimization Sciences,
1994,15(3):405 —413.

[4] Pan P Q. The most-obtuse angle row pivot rule for achieving
dual feasibility: a computational study[J]. European Journal
of Operational Research,1997,101(1):167 —176.

[5] Pablo G G, Angel S P. Phase [ cycling under the most-ob-
tuse-angle pivot rule[J]. European Journal of Operational
Research,2005,167(1):20 —27.

[6] Koberstein A, Suhl U. Progress in the dual simplex method
for large scale LP problems: practical dual phase 1 algorithms
[J1. Computational Optimization and Applications, 2007, 37
(1):49 -65.

[7] Dantzig G B. Maximization of a linear function of variables
subject to linear inequalities [ C]//Activity Analysis of Pro-
duction and Allocation. New York: John Wiley & Sons, 1951:
339 —347.

[8] Forrest J J H, Goldfarb D. Steepest-edge simplex algorithms
for linear programming [ J]. Mathematical Programming,
1992,57(1):341 —374.

[9] Harris P M J. Pivot selection methods of the Devex LP code
[J1. Mathematical Programming,1973,5(1):1 —28.

[10] Bland R G. New finite pivoting rules for the simplex method
[J]. Mathematics of Operations Research, 1977,2(2):103 —
107.

[11] Dantzig G B, Orden A, Wolfe P. The generalized simplex
method for minimizing a linear form under linear inequality
restraints[ J] . Pacific Journal of Mathematics, 1955,5(2)183
—195.

[12] Pan P Q. Practical finite pivoting rules for the simplex meth-
od[J]. OR Spektrum, 1990, 12(4):219 —225.

[13] Terlaky T, Zhang S. Pivot rules for linear programming: a
survey on recent theoretical developments[J]. Annals of Op-
erations Research, 1993,46(1):203 —233.

[14] Orchard-Hays W. Advanced linear programming computing
techniques| M]. New York: McGraw-Hill Book Company,
1968.

[15] Maros 1. Computational techniques of the simplex method
[ M]. Norwell, MA: Kluwer Academic Publishers, 2003.

[16] Murtagh B A, Saunders M A. MINOS 5.5 User’s guide[ R].
Stanford: Department of Operations Research of Stanford U-
niversity, 1998.

[17] Pan P Q. Efficient nested pricing in the simplex algorithm
[EB/OL]. (2007-12-16) [ 2008-01-16] . http: //dx. doi. org/
10. 1016/j. orl. 2007. 10. 001.

[18] Pan P Q, Li W, Cao J. Partial pricing rule simplex method
with deficient basis[J]. Numerical Mathematics: A Journal of
Chinese Universities, 2006, 15(1):23 —30.

XTRAgREES THREROH LR

41 510
(Réaxx

WE: v A= T R KA AAT 9] AN RS, 5]

RREVOGAF M. RIGHET 2 MNF 2R 694 B 19 A

4 XS LT F ok SR AR AR L 64 A B L. LS, A
AEZ] B 2B T AN 6 — A JUAT g Ak

SRR ZBALK) ;LT
hE %5 :0221. 1

#F A, dw 210096)

B R AL TR AT £ 2342 MR T E S A&

,JHIER T AL A AT 5 LE%LFJ'J LR ESINENTERAR
i AF % & 09 pricing HLW] 3

7T @R, IR T A6 B R XA

Wk 50 AL A ;. E 0% pricing ; K HLAL 7] A



