Journal of Southeast University (English Edition)

Vol. 24, No. 2, pp. 168 - 173

June 2008 ISSN 1003—7985

Objective increment based metaheuristic
for total flowtime minimization in no-wait flowshops

Zhu Xia

Li Xiaoping

Wang Qian

(School of Computer Science and Engineering, Southeast University, Nanjing 210096, China)

Abstract: To solve the NP-complete no-wait flowshop problems,
objective increment properties are analyzed and proved for
fundamental operations of heuristics. With these properties,
whether a new generated schedule is better or worse than the
original one is only evaluated by objective increments, instead of
completely calculating objective values as the traditional
algorithms do, so that the computational time can be considerably
reduced. An objective increment-based hybrid genetic algorithm
(IGA)is proposed by integrating the genetic algorithm (GA) with
an improved various neighborhood search (VNS) as a local
search. An initial solution generation heuristic(ISG)is constructed
to generate one individual of the initial population. An
expectation value-based selection mechanism and a crossover
operator are introduced to the mating process. The IGA is
compared with the traditional GA and two best-so-far algorithms
for the considered problem on 110 benchmark instances. An
experimental results show that the IGA outperforms the others in
effectiveness although with a little more time consumption.

Key words: no-wait flowshops; total flowtime; objective
increment; hybrid genetic algorithm

cheduling plays a crucial role in manufacturing and
S service industries. It can be defined as setting the time-
table for processing a given set of jobs on a set of machines
in order to optimize a given measure of performance'’.
Among all the types of scheduling problems, no-wait flow-
shop problems (NWFP) have important applications in
process-oriented enterprises'”’ including chemical process-
ing, food processing, etc. Modern manufacturing systems
such as just-in-time (JIT) systems, flexible manufacturing
environments and robotic cells can also be modeled as NW-
FP. In NWFP, the start of a job on a given machine should
be delayed when it is necessary to ensure the completion
time of the operation coinciding with the start of the next
operation on the successive machine. In other words, the op-
erations of a job have to be continuously processed. No in-
terruption is permitted either on or between machines.

Total flowtime is an important performance measurement
in practice. It equals the sum of completion times, the mini-
mization of which may lead to stable or uniform utilization
of resources, rapid turn-around of jobs, and minimizing in-
process inventory'”'. NWFP with the objective of total flow-

time minimization is usually denoted as F,, |nwt| Y, C, .

Received 2008-02-18.

Biographies: Zhu Xia(1982—), female, graduate; Wang Qian (correspond-
ing author) , female, doctor, professor, gianwang6491 @ 263. net.
Foundation items: The National Natural Science Foundation of China (No.
60504029, 60672092) , the National High Technology Research and Devel-
opment Program of China (863 Program) (No.2008AA04Z103).

Citation: Zhu Xia, Li Xiaoping, Wang Qian. Objective increment based me-
taheuristic for total flowtime minimization in no-wait flowshops[J] . Journal
of Southeast University (English Edition), 2008, 24(2): 168 —173.

Hall et al. " proved that F, \ nwt\ Z C, are NP-complete

in the strong sense even for the 2-machine case. Heuristics
and metaheuristics are commonly used for NWFPs. Most
metaheuristics can usually obtain better solutions than heu-
ristics at the expense of much more CPU-time. However,
heuristics need much less CPU-time but obtain worse solu-
tions than metaheuristics.

For decades, many heuristics have been proposed for the
problem considered in this paper. van Deman and Baker'®
proposed a branch and bound approach to find the optimal
solution for special cases and introduced a set of procedures
for generating lower bounds of optima. Adiri and Po-
horyles'” proved some properties of optimal schedules for 2-
machine cases. Several theorems were also proved for poly-
nomial bounded algorithms for m-machine problems with an
increasing or decreasing series of dominating machines. van
der Veen and van Dal®™ showed that the problem was
solvable when the objective function was restricted to semi-
ordered processing time matrices. Rajendran and Chaudhu-
it presented two heuristic algorithms, RC1 and RC2, which
distinctly outperformed the algorithms investigated by Bon-
ney et al. """ Bertolissi'” improved the EB algorithm'"!
by job insertion methods. Experimental results show that the
algorithm proposed by Bertolissi'’? is superior to RCI,
RC2"', EB'"? and the algorithm of Bonney and Gundry'"” .
Chen et al."" developed a traditional genetic algorithm
TGA. Experimental results show that the TGA yields better
solutions in 168 times out of 200 than RC1 and RC2, but its
performance becomes worse when the problem size increa-
ses. Fink and VoB'"' examined the application of diverse
metaheuristics on benchmark instances given by Taillard"'"' .
Results show that the reactive tabu search algorithm (SRTS)
is the most effective. Aldowaisan and Allahverdi''” construc-
ted eight algorithms PH1 to PH4 and PHlp to PH4p and
compared them with RC1 and the RC2"', the algorithm of
Bertolissi'"” and the TGA'"'. Results show that PHIp is the
most effective. However, Phlp!”" and SRTS'” have not
been compared so far.

In this paper, the objective increment-based IGA is pro-

posed for F,, | nwt | z C, . The IGA works in a similar way

to the HGA given by Ruiz et al. """, A heuristic ISG is con-
structed to generate one of the individuals in an initial popu-
lation. An improved longest common subsequence (ILCS)
based crossover operator is proposed based on the operator
in Ref. [19] for the mating process. A selection mechanism
for individual evolvement is improved by designing an ex-
pectation value on each individual in the population. The
IGA is hybridized with a local search based on VNS, Be-
sides, objective increment methods are integrated with the
IGA for CPU-time reduction.

Objective increment based metaheuristic for total flowtime minimization in no-wait flowshops 169

1 Problem Description

The NWFP is an important class of scheduling problems
where n jobs {J,, J,, ..., J, } have to be scheduled on m con-
secutive machines {M,, M,, ..., M, } in the same order, and
that once a job is started, it must be processed until comple-
tion without any interruption either on or between machines;
i. e., waiting can occur only on the first machine. The fol-
lowing assumptions are taken into account in the NWFP:

1) Jobs consist of a strictly ordered sequence of opera-
tions and the sequence is predetermined.

2) Only one job can be processed on one machine at the
same time.

3) Processing times of operations are deterministic and
known in advance.

4) Once started on the first machine, the following opera-
tions of a job cannot be interrupted before completion, either
on or between machines.

It is clear that a schedule is a job sequence derived from
job set {J,, J,, ..., J,}. For simplicity of analysis, a virtual
job is introduced to a sequence as the first job denoted as
4 Of which the processing time on each machine is zero. A
schedule 7r can be represented as (7, 7> ..., 7(,;) Where
., €{J, 5, .0 J,}(1<i<n) stands for the i-th job in 7r.
Let ¢, , be the processing time of J,(i=0,1, ...,n) on M, (k
=1,2,...,m), D, be the distance between the completion
times of J, and J; on the last machine when J; is directly pro-
cessed after J,. Thus, the distance can be computed by the
following expression according to Ref. [21]:

Di,/' = ,(:IPZ?‘_)EM{ ;((th,j _th,i) +tk,i} (1

7

It is obvious that D, ; = Z t,(j=12,...,n)and D, >
k=1

0. Let D[}, ; be the distance of job pair (7, 7 ;) (0=<i,j
<n,i#j), and let d], be the distance between 7, (0<i <
n) and its direct successor 7, ,; the total flowtime of

can be defined as

n-1

n-l1
F,(m) = za(n_i)D‘[Hi].[iHJ = zo(”‘i)dﬁ'] (2)
Time complexities of D, ; in Eq. (1) and F, () in Eq.
(2)are O(m) and O(mn), respectively. However, since D, ;
only depends on t, ; which is predetermined, the distance be-
tween any of the two jobs maintains the same for any sched-
ule. As a result, all the distances between any of the two jobs

in set {J,, J,, ..., J,} may be calculated in advance and
stored in matrix M as follows:
© Dy, Dy, D,,
« D, D, D, ,
M = ® DZ,I D2.2 D2,n
® Dn. 1 Dn, 2 s nn

(n+1) x(n+l)
Hence, the complexity of Eq. (2) can be reduced to O(n).
2 Objective Increment Method

For F, | nwt]| z C,, neighborhood construction in the

searching processes of both heuristics and metaheuristics
generally consist of three fundamental operators referred to
insert, delete and swap. In terms of Egs. (1) and (2), the to-
tal flowtime of a schedule is the weighted sum of adjacent
distances (AD) and each AD depends only on the operation
processing time of the two jobs. Therefore, a fundamental
operator(insert, delete or swap) can only increase/decrease
the objective values of the positions where the operator con-
ducts in a schedule. In other words, ADs are identical before
and after performing a fundamental operator for those posi-
tions the operator exerts no effect on. For the reason that on-
ly a few job positions change for fundamental operators and
ADs in change positions can be obtained directly from M,
the corresponding objective increments can be calculated
quickly.

Assume that 77 is a neighbor solution of 77, then the ob-
jective value F(7r) can be calculated by adding increment
A(7) (minus if 7 is better than 77,) caused by operators to
F(r,) instead of being recalculated by Eq. (2),i.e. F()
=F(m,) + A(a). This is so-called objective increment
method. For simplicity, x, (), s(k) and y, () are prede-
fined as

0 i=n

x, () = {(n - i) (D, ., —df,) otherwise

v

0 j=n
yi(m) = {(n -)(D,, —di) otherwise

0 k<0
_ k
s(m) ‘{zd;’,,] k=0

i=0

Then different operators have different characteristics de-
scribed as follows:

Theorem 1 If job J_ is inserted next to job 77, (0 <k<
n) in sequence(7y, s --.» T) Of F [nwt]| z C,, the
objective increment would be A(n, k) =s(k-1) +(n -k +
DD, +y, (7).

Theorem 2 If job 7, (0 <k<n) in sequence (1,
s - M) Of F, [nwt| Y, C, is removed, the objective
value would be reduced by a(n, k) =s(k-1) +(n-k) -
di,_y =y, (7).

(k=11
Theorem 3 Exchange the position of job 7, with job

, in sequence (ar,, 7(y» .- 7,) Of F, | nwt | 2 C,, the

objective increment would be

'xi—l,j(ﬂ) +y7[,‘,,(77') +(n _i)(DE']-[i] —d[ﬂ,»]) j=i+1
X (m) +y, () +x;,_(m) +y, () otherwise

w(i.)) ={
All these three fundamental operators(characteristics) can

be executed in time O(1).

3 Proposed GA

3.1 Initial population

The population in this paper is composed of three parts:
The first member is generated by the ISG; up to B% of the
initial population is generated by the nearest neighborhood

170

Zhu Xia, Li Xiaoping, and Wang Qian

(NN) ; the remaining (100 — B) % is filled with completely
randomly generated sequences.

The first individual of the initial population is developed
according to the characteristic of the problem considered.
From Eq. (2), it can be seen that F (7) is totally decided
by the weighted sum of 4] (0<i<n -1) in (7, 7> -
o,) - Weight decreases as job position increases. Thus, in
order to obtain the minimal F,(7), jobs with the smallest
dy,; should be put as much in front as possible in a schedule
while those with a large df; should be put backwards. It is
actually to create a Hamilton route starting from 7, . Assig-
ning M to M’', a shortest Hamilton route is constructed
through operations on M’ in the ISG. The basic idea of the
ISG is described as follows: Let x, be null and u, be the set
of all jobs. To get rid of a circle, let D, be « (j=0,1,
.} from row 77, in
M’ and let it be 77, then p, -, + {7, }, uy e, — {7},
i«—i +1. Do the step above repeatedly until u, = () and then
obtain a path (., 7, ..., 7,). Improve the solution
with the RZ algorithm'** and then obtain the initial solution
a, with objective value F, () calculated by Eq. (2). The
procedure of the ISG is described as follows:

1 M'—M,
2 <, mp<—{all jobs}, i«—1;
3 If w, = (), then go to 6;

4 Forj=0ton
R
S Di Fj:%??ﬁ”{Dm,w}’Ml‘*,le +{m b, -

{7}, ii+1,go to3;

n-l1

"W[nl)’Fn(Wo) <« Z(n -1 -

i=0

6 7, < RZ(),)5 -
df,, stop.

The time complexity of the ISG is O(n’) by calculating
F with Eq. (2), and is reduced to O(n’) using objective in-
crement methods.

After selecting a job from (., 7y, ..., 7,) as the first
job, NN is applied by appending at each step an unscheduled
job with a minimal inevitable delay to the last job of the par-
tial sequence as yet uncompleted. In the IGA, NN is repeated
for all the possible jobs in an identity permutation as the first
job to construct B% of the initial population. The remaining
(100 - B) % is filled with randomly generated sequences.
By doing so, the diversity of the population is achieved.

3.2 Selection mechanism and generational scheme

The individuals presented in a population contain much
information regarding the solution of the problem. For the
selection of parents, each schedule (individual) has a total
flowtime value that refers to the fitness value of that individ-
ual. The fitness value of a schedule i (denoted as Fit,)is cal-
culated from the fitness function defined as

Fit, = max {TFT,} - TFT, (3)
=1,2,...,N

where N is the size of the population and TFT, is the total
flowtime value of schedule i. Therefore, the procedure gives

more chances to the ones with lower total flowtime values
for being selected and generating offspring.

However, individuals of a population in the GA become
more and more similar as each generation grows up. It de-
stroys the population diversity and brings low searching effi-
ciency. Thus, individual concentration C is introduced in
this paper to define a measure of that diversity in terms of
similarity degree R between two individuals in the current
population. Entropy theory'™ is employed here to estimate
the probability of the recurrence of patterns from an infor-
mation source. The information entropy of locus x in the

N
population is represented by H (N) = - 2 p.(x)logp, ,
i=1

where S is the variety of allele and p, means the probability
that locus x is allele i. So, the average information entropy

M
H(N) is given as H(N) = iz H (N), where M is the
x=1

size of genes in an individual. The similarity degree R, be-
tween individuals v and w can also be represented by R, =
1

1+HQ) For each individual of the population, the concen-

. . 1 ¢
tration C, is calculated as C, = WZ Q,.,, where O =
w=1

., T is the predetermined threshold value.
0 otherwise

Therefore, the expectation value E of the individual v is con-
sidered as the judgment of the selection mechanism and cal-
culated by

{1 R, =T

_Fit,
vTC

v

(4)

Eq. (4) shows that the probability of being selected for the
mating process is higher for individuals with a greater fitness
value. It is lower for individuals with a higher concentra-
tion. At the beginning in the IGA, two individuals with the
highest expectations are selected as parents for the mating
process (selection _scheme 1). When there is no longer any
improvement on the best solution for some successive gener-
ations, two individuals with the highest and lowest expecta-
tions, respectively, are selected instead (selection _ scheme
2).

The generational scheme is a process by which new indi-
viduals in a new generation replace the worst members from
the previous generation. The process is executed under the
constraint that a new individual only replaces the worst one
I, in the current population if its total flowtime is better
than that of I and the new sequence must be unique,
i.e., the same sequence does not exist in the current popu-
lation.

3.3 Crossover and mutation

ILCS is proposed as the crossover operator which is based
on the operator in Ref. [19]. In ILCS, first, the longest com-
mon subsequence of two sequences (parent 1 and parent 2)
is obtained with order of jobs which are expected to give
good results, denoted as [. Copy jobs of [/ in the same posi-
tions as they are in the parents into offspring(child 1 and
child 2) . Treat elements not belonging to / in each parent as
another sequence, and then repeat the same process as above

Objective increment based metaheuristic for total flowtime minimization in no-wait flowshops 171

between the sequence and the current minimum individual.
After that, another two longest common subsequences(/, and
1,) are obtained of which elements might be added into the
offspring. By doing so, the locations of those jobs whose rel-
ative positions in both parents and the current minimum are
the same are preserved. Then the remaining elements are
swapped in the following way: The first element of parent 2
which is not presented in any longest common subsequence
is copied at the first available place in child 1 and the ele-
ment available at that position in parent 1 is copied at the
first available position in child 2. For better understanding,
an 11-job problem is illustrated in Fig. 1.

Parentl: 4 6 9 3 7 2 10 8 1 5 11

Parent2: 1 7 5 8 6 2 4 11 3 10 9

W

O
[\)
-
o
oo
[]
W
[«]
—_
S
et
e

Fig.1 ILCS

In Fig. 1, of parent 1 and parent 2 is (4, 3, 10) . Elements
not belonging to [/ in parent 1 and parent 2 are (6,9,7,2,8,
1,5,11) and (1,7,5,8,6,2,11,9). Opt is the current opti-
mal individual in the population. The longest common sub-
sequence between (6,9,7,2,8,1,5,11) and opt is (2,8, 1)
(i.e.l)), and that between (1,7,5,8,6,2,11,9)and opt is
(1,7,6)(i.e. l,). After that, copy all the jobs in [, /, and [,
in the same positions as they are in the parents. In parent 1,
job 9 is the first element not belonging to any longest com-
mon subsequence. This goes into the first available slot in
child 2 which is location 3. Likewise, job 7 from parent 2
goes into the first available slot in child 1 which is location
2. Repeat the above steps until two children are completed.
The time complexity for finding the longest common subse-
quence is O(n’).

Mutation is done by selecting two different locations on
an individual at random and inversing the order of jobs be-
tween them with a small probability P . It acts to enlarge
searching space and to prevent the algorithm from a local
optimum.

3.4 VNS local search

In general, VNS’ s main cycle consists of three phases: 1)
Local search is to find local minimum in a neighborhood
structure; 2) Move from one local search to another in case
of no improvement for diversification of the search; 3) Shake
means that a new solution generated by a local search is
compared with the original one. If it is better, it replaces the
original one and the algorithm starts again with the first local
search. It is obvious that the performance of a local search
depends on the choice of neighborhood structures denoted as
N(k=1,2,..., k), where k_,_ is the maximal number of
neighborhood structures. In this paper, VNS is embedded in
the IGA but only two neighborhood structures DDI and SDI
(i.e.k,,, =2)are used:

1) DDI: d jobs deleted and inserted

d jobs are randomly removed from sequence 7 and per-
mutated in reverse order of their positions in 77. These d jobs
form sequence 7, and the rest jobs in 7 form sequence 7.
Each job in 77, is removed and inserted into the position with
minimal objective increments until 77, is empty. Thus, a
complete candidate solution is yielded.

2) SDI: single job deleted and inserted

One job is randomly removed from sequence 7 and rein-
serted into the position with minimal objective increments.

Let N, and N, be neighborhood structures DDI and SDI
respectively, and N,(x) be a set of solutions generated in the
k-th neighborhood of sequence x. The procedure of VNS to
sequence 77 is described as follows:

VNS()
{sy—, k«1;
Choose N,, k=1,2;
s«—Perturbation(s,) ;
Do {
5" «—ChooseBestOf(N (s));
If F(s™) < F(s), then s<—s", k«—1;
else k«—k +1;
} While(k<2)
If F(s) < F(1r), then 7r«<s; }

In this VNS algorithm, 7 is assigned to the incumbent so-
lution s,. After choosing the neighborhood structure N,, s, is
disturbed to avoid getting trapped into local minima. Then
the local search is applied to the perturbed solution s. During
the local search, DDI/SDI is applied to s repeatedly to gen-
erate various neighbor solutions, and the best of those solu-
tions is selected as s* for further evaluation. VNS is applied
on individuals after selection, crossover or mutation with a
probability P . Besides, at the end of each generation, the
best individual of the current population is also enhanced by
VNS with probability 2P .

4 IGA

It is the fact that, at some given time the population can
achieve a sufficiently low diversity for the process to stall
around a local optimum. To overcome this problem, a restart
mechanism is adopted as follows: Find W% individuals of
the population with high individual concentration and re-
place them with new individuals generated at random. The
algorithm stops when there is no improvement to the current
optimal solution after three times of restart. The whole pro-
cedure of the IGA can be described as follows:

gen«—0, count«—0, time<«0, flag«—true;
POP<«—initialization() , result«—minTFT(POP) ;
Do {
//evaluate individual
CaculateExpectationValue(POP) ;
//selection mechanism
If(flag = true)
//selection _ schemel
pl, p2«—IndividualWithMaxExpectValue(POP) ;
else {
//selection _ scheme2
pl«—IndividualWithMaxExpectValue(POP) ;
p2«—IndividualWithMinExpectValue(POP) ; }

172

Zhu Xia, Li Xiaoping, and Wang Qian

// crossover
(cl, c2) «ILCS(pl, p2, result) ;
//mutation
cl«—mutation(cl, P,,), c2«<—mutation(c2, P, ;
//local search
cl«—VNS(cl, P), c2«—VNS(c2,P);
// generational scheme(repeat this procedure for c2)
I, ..<max TFT(POP);
If ((TFT(cl) < TFT(I,,,))and (
(TFT(cl) # TFT(pop))or(cl unique)))
Iwurst
gen<«— gen +2;
if(gen = N)
{
I,.,«~—min TFT(POP),
I,..<—VNS(/I,.,2P, .);

best ? vns
If(TFT(I,..) < TFT(result))
{

«—cl;

best

result«—1,,;
time<«—0, count«—0, flag«—true; }
else {
time + +,count + +; }
gen<0;
}
//selection judgment
If(time =TIME)
flag«false;
//restart scheme
If(count=COUNT)
{
POP «—Restart(POP) ;
time«—0, count«—0, flag«—true; }
} While(termination criterion is not satisfied)
Return result, the algorithm stops.

5 Experimental Results

The proposed IGA is compared with the traditional GA
and the two best existing algorithms SRTS'” and PH1p'""
on benchmark instances of Taillard"® . For better analysis,
110 benchmark instances are divided according to the prob-
lem scales, which means instances with the same scales are
put together as a group. Hence, there are 11 groups, each of
which consists of 10 instances. The main parameters in the
IGA are set as follows: N =50, B =40, W =30, TIME =8
and COUNT = 12. All the algorithms are implemented by
Visual C ++ and performed on PC 2. 93 GHz with 512 MB
RAM. For each instance, 5 runs are conducted.

To compare the performance of the three heuristics in ef-
fectiveness, two measurements are analyzed: average relative
percentage deviation(ARPD) and CPU time. Fig. 2 and Fig.

20.0

17.5
15.0

1 2 3

4 5 6 7 8 9
Group

Fig.2 Comparison of ARPD

10 11

3 show the ARPDs and CPU times of the four algorithms in
11 benchmark groups.

20001
1750
1500
1250
1000 -
750 |
500 -
250
0_

1 2 3

—4—1GA

—=— SRTS
—aPHIp

CPU time/s

4 5 6
Group

Fig.3 Comparison of CPU-time

7 8 9 10 11

From Fig. 2, it can be seen that the ARPD of the IGA re-
mains at zero for all 11 groups. As the problem size increa-
ses, ARPDs of SRTS and PHI p increase with fluctuation and
reach the tops at group 10 with 3.933% and 6. 214% . The
average ARPDs of SRTS and PHIp are 1.365% and
3.701% . However, the ARPD of the GA fluctuates greatly
as the problem size increases. The ARPD value of the GA in
each group is much larger than those of the other three and it
even reaches 20% at group 11. The average ARPD of the
GA is 8.313% . Therefore, the proposed IGA seems to be
the most effective so far.

The CPU time of the GA is not illustrated in Fig. 3 for the
reason that it is much more than the times of the other three
and not even of the same quantity class. For example, it
needs 23 886 s at group 11 in the GA and it is about twelve
times larger than that of the proposed IGA. Fig. 3 shows
that, although the operation steps of the IGA are much more
than those of SRTS, the CPU time of the IGA is only about
twice that of SRTS. This may due to the fact that time is
largely reduced by the objective increment methods which
obtain the objective value only by calculating the variables
of the objective value instead of complete recalculation. Be-
sides, the IGA outperforms PHIp on the effectiveness at a
little cost of efficiency. Therefore, the IGA is promising and
worthy in practical projects.

6 Conclusion

In this paper, no-wait flowshops with total flowtime mini-
mization is considered. According to the problem character-
istics, the independency of time distances between jobs in
schedule is analyzed and objective increment properties of
fundamental operators are described. The IGA is proposed
according to the obtained properties. In the IGA, the ISG is
constructed to generate one individual of an initial popula-
tion. The selection mechanism of individual evolvement is
improved by evaluating the expectation value of each indi-
vidual. The ILCS crossover operator is developed for the
mating process. The IGA is incorporated with a VNS-based
local search where DDI and SDI are constructed as two
kinds of neighborhood structures. In addition, a restart
mechanism is adopted to prevent the algorithm from a local
optimum. Finally, the computational results are given and
demonstrate the superiority of the IGA to the traditional GA
and the two best existing algorithms on effectiveness at the
cost of a little more CPU-time.

Objective increment based metaheuristic for total flowtime minimization in no-wait flowshops 173

References

[1] Pinedo M. Scheduling: theory, algorithm, and systems [M] .
Englewood Chills, NJ: Prentice-Hall, 1995.

[2] Hall N G, Sriskandarajah C. A survey of machine scheduling
problems with blocking and no-wait in process [J]. Opera-
tions Research, 1996,44(3):510 —525.

[3] Rajendran C. A no-wait flowshop scheduling heuristic to
minimize makespan[J]. Journal of the Operational Research
Society, 1994,45(4):472 —478.

[4] Wang L, Zheng D Z. An effective hybrid optimization strate-
gy for job-shop scheduling problem [J]. Computer and Oper-
ation Research,2001,28(6):585 —596.

[5] MacCarthy B L, Liu J. Addressing the gap in scheduling re-
search: a review of optimization and heuristic methods in pro-
duction scheduling [J]. International Journal of Production
Research,1993,31(1):59 —79.

[6] van Deman J M, Baker K R. Minimizing mean flow time in
the flowshop with no intermediate queues [J]. AIIE Transac-
tions, 1974, 6(1):28 —34.

[7] Adiri I, Pohoryles D. Flowshop/no-idle or no-wait scheduling
to minimize the sum of completion times [J]. Navel Re-
search Logistics Quarterly, 1982,29(3):495 —504.

[8] van der Veen J A A, van Dal R. Solvable cases of the no-wait
flowshop scheduling problem [J]. Journal of the Operational
Research Society, 1991,42(11):971 —980.

[9] Rajendran C, Chaudhuri D. Heuristic algorithms for continu-
ous flow-shop problem [J]. Naval Research Logistics, 1990,
37(5):695 —705.

[10] Bonney M C, Gundry S W. Solutions to the constrained flow-
shop sequencing problem [J]. Operational Research Quart,
1976,27(4): 869 — 883.

[11] King J R, Spachis A S. Heuristics for flow-shop scheduling
[J1. International Journal of Production Research, 1980, 18
(3):343 -357.

[12] Bertolissi Edy. Heuristic algorithm for scheduling in the no-

ETHREENR/NMEZTIHNELE

® A

wait flow-shop [J]. Journal of Materials Processing Technol-
0gy,2000,107(1/2/3):459 —465.

[13] Bertolissi Edy. A simple no-wait flow-shop scheduling heu-
ristic for the no-wait flowshop problem[C]//Proceedings of
the 15th International Conference on Computer-Aided Pro-
duction Engineering, CAPE’99. Durham, UK, 1999.

[14] Chen C L, Neppalli R V, Aljaber N. Generic algorithms ap-
plied to the continuous flow shop problem [J]. Computers
and Industrial Engineering, 1996,30(4):919 —929.

[15] Fink A, Vop S. Solving the continuous flow-shop scheduling
heuristic to minimize makespan[J]. Journal of the Operation-
al Research,2003,151(3):400 —414.

[16] Taillard E. Benchmarks for basic scheduling problems [J].
European Journal of Operational Research, 1993, 64(2):278
—285.

[17] Aldowaisan T, Allahverdi A. New heuristics for m-machine
no-wait flowshop to minimize total completion time [J].
OMEGA, 2004, 32(5):345 —352.

[18] Ruiz Rubén, Maroto Concepcion, Alcaraz Javier. Two new
robust algorithms for the flowshop scheduling problem [J].
OMEGA, 2006,34(5):461 —476.

[19] Iyer Srikanth K, Saxena Barkha. Improved genetic algorithm
for the permutation flowshop scheduling problem [J]. Com-
puters and Operations Research,2004,31(4):593 —606.

[20] Blum Christian, Andrea Roli. Metaheuristics in combinatorial
optimization: overview and conceptual comparison [J]. ACM
Computing Surveys, 2003, 35(3):268 —308.

[21] Li Xiaoping. Heuristic for no-wait flow shops with makespan
minimization [J]. International Journal of Production Re-
search,2008,46(9):2519 —2530.

[22] Rajendran C, Ziegler H. An efficient heuristic for scheduling
in a flowshop to minimize total weighted flowtime of jobs
[J]. European Journal of Operational Research, 1997, 103
(1):129 —138.

[23] Abramson N. Information theory and coding [M]. New
York: McGraw-Hill, 1963: 129.

HFRAEEERRE

~i,

=

Fhr 2 H

(R RFHEAFL TSR, d R 210096)

ST L 4t xt NP-% 4 8 76 5 A AR S 7 L 19V L, 7 A 5 R MR 51 B A7 30 RO AR, 20 W7 SHHE 9 B 4 K
E AT 40 B AR BT, A AR R AR AR WA IR 1E 5, K K MK ST R 9 B 0. 4R s 3 AL AR
Bk & (VNS) H — 30 B304 kU)o AT 5 0 o5 00 77 0 ok TGA AR 4 5 o 1980, AR 4B 1) B 5 3%
ISG S5k = A AN ks AR BE W 4 — ANk, S I T 22 48 49 AR s FbL) Ao it At £2 1 SUSEF TLCS. R A 110 A
% J Benchmark 5245] 4 FT 4% # 89 IGA JEok 5 4 4ol 4 1ok VA B R AB3 19 4 B 3T ko 2 A0 SE ok AT ML 8, 58
Bo 2k R AU IGA Sk s AR AOH LT I Ae Lo AR T JhAe 3 A S0k

S R SRR B R T B AR RS A ok

FESES TP278

