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Abstract: A two-phase monadic approach is presented for
monadically slicing programs with procedures. In the monadic
slice algorithm for interprocedural programs, phase 1 initializes
the slice table of formal parameters in a procedure with the given
labels, and then captures the callees’ influence on callers when
analyzing call statements. Phase 2 captures the callees’
dependence on callers by replacing all given labels appearing in
the corresponding sets of formal parameters. By the introduction
of given labels, this slice method can obtain similar summary
information in system-dependence-graph( SDG) -based algorithms
for addressing the calling-context problem. With the use of the
slice monad transformer, this monadic slicing approach achieves a
high level of modularity and flexibility. It shows that the monadic
interprocedural algorithm has less complexity and it is not less
precise than SDG algorithms.
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rogram slicing!" is an effective technique for narrowing
P the focus of attention to the relevant parts of a pro-
gram. Program slicing has been widely used in many soft-
ware activities'””'. Program slicing can be classified into
static slicing and dynamic slicing. This paper focuses on the
static slicing methods.

The original program slicing method was expressed as a
sequence of data flow analysis problems'''. An alternative
approach relied on program dependence graphs(PDG) ™.
Most of the existing slicing methods are evolved from the
two approaches. The current slicing methods, however, are
singular, and are mainly based on reachability problems of
PDG or SDG (system dependence graph)"'. In addition, the
existing slicing methods are incremental and sequential, not
compositional. However modern programming languages
support modularized programming, and programs consist of
a set of modules. So the program analysis should reflect this
design technology, and the analysis methods( including pro-
gram slicing) should be flexible and reusable for improving
efficiency. To solve these problems, we present in Refs. [6 —
7] a novel formal method of program slicing, called modular
monadic program slicing, which is based on modular monad-
ic semantics. This paper extends it to slice interprocedural
programs.

Weiser gave a data-flow method for interprocedural sli-
cing where he directly used the existing intraprocedural sli-
cing algorithm'". This method is simple and easy to under-
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stand and implement. However, Weiser’ s method does not
account for the calling context of a called procedure; thus,
the resulting slices may be imprecise”’. Subsequently, Hor-
witz et al. " developed the SDG representation and a two-
phase graph-reachability algorithm over the SDG to compute
interprocedural slices. Their algorithm involves two steps:
First, it constructs the corresponding SDG with summary ed-
ges, which represent transitive dependences due to procedure
calls; secondly, it computes slices through two-phase traver-
ses on the SDG. This slicing algorithm can address the call-
ing-context problem, but the construction of the SDG may
be complex.

1 Preliminaries

Because monads can avoid any reference to irrelevant se-
mantic components when defining the semantics of each
construct, they are a more disciplined notation than A-nota-
tion whose unrestricted use makes denotational semantics
lack modularity and reusability. In general, a monad is a tri-
ple(m, return,, bind, ), where m is a type constructor, and
return,, and bind,, are its basic operators. A monad trans-
former consists of a type constructor ¢ and its lifting function
“lift”, where tr maps the monad, (m, return,, bind ), to the
new one, (¢ m, return,,, bind, ). The concept of lifting al-
lows us to consider the interactions between various fea-
tures. For more details of monads and monad transformers,
please see Refs. [8 —10].

There exist many monad transformers, such as state mo-
nad transformer StateT, environment monad transformer En-
vT, error monad transformer ErrT"™'", and slice monad
transformer SliceT'® which is shown as follows:

type SliceT L m a=L — m(a, L)

returng, ., ,» X = AL. return, (x, L) ;

m “bind g0, f=AL {(a, L")« m L;fal'},
liftg, .. ,m = AL. {a<—m;return, (a, L) }
updateSlice f= AL. return, (f L, L)

m?

Modular monadic semantics specifies the semantics of a
language by mapping terms to computations. The flexibility
of modular monadic program slicing allows us first to con-
sider a simple language W, whose abstract syntax is as fol-
lows:

S:: =ide: =l.e \S,;S2 | skip | read ide | write 1. e
|if 1. e then S, else S, endif
| while 1. e do S endwhile

We assume that the labeled expressions have no side-
effects. The expressions, whose syntax is left unspecified for
the sake of generality, are uniquely labeled. For constructing
a syntactically valid slice result, we can define Syn(s, L) for
language W as is done in Refs. [6 —7]. It allows us to con-
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centrate on the labeled expressions in an analyzed program,
since they are predominant parts in a program slice, and oth-
er parts can be captured through Syn(s, L).

2 Intraprocedural Monadic Slicing

In Refs. [6 — 7], we abstracted the computation of pro-
gram slicing as a slice monad transformer SliceT L m( see
section 1), where L denotes a set of labels of expressions
that are required to compute the current expression. A slice
monad transformer takes an initial set of labels, and returns a
computation of a pair of the resulting value and a new set of
labels. The lifting function lift says that a computation in the
monad m behaves identically in the monad SliceT L m and
makes no changes to the set of labels. The operation update-
Slice supports the update of program slices.

For simplicity, we only consider end static slicing for a
single variable, i. e. the slicing criterion is (p, v), where p
is the end program point, and v the variable of interest. One
can easily generalize this to a set of points and a set of vari-
ables at each point by taking the union of the individual
slices. Based on modular monadic semantics of a program
language, we gave the monadic static-slicing algorithm for
single-procedure programs in Refs. [6 —7]. Its main idea can
be briefly stated as follows: For obtaining the program slice
w.r. t. a slicing criterion, we first apply the program-slice
transformer SliceT to semantic description of the program
analyzed. It makes the resulting semantic description include
the program-slice semantic feature. According to this seman-
tic description, we then analyze each statement in sequence.
Finally we obtain the program slices of all single variables in
the program through the final slice table Slices and Syn(s,
L), including the program slice of the variable of interest.

3 Interprocedural Monadic Slicing

The modular monadic approach mentioned previously is
flexible enough that we can easily introduce a new program
feature for analysis. In this section, we will illustrate this
power by considering an extension of the language W with
call-by-value-result procedures.

The dependence relations among procedures can be divid-
ed into two categories. One is callees’ influence on callers,
since a callee (i. e. a program called) may change the data
dependences in its callers. The other is callees’ dependence
on callers, since the execution of a callee depends on its cal-
lers. Both the relations should be considered during analy-
zing a call statement.

To analyze the first class of dependence relations, we fo-
cus on the dependencies among parameters. During the exec-
utive process of a sequence program, the influence of a
callee on its callers can only be passed on by the corre-
sponding formal parameters and the non-local variables. This
allows us to first analyze independently each procedure, ob-
taining the dependencies among formal parameters, and then
compute interprocedural slicing through the relations be-
tween the formal and the actual parameters''” .

In this paper, we consider the in-out formal parameter,
corresponding to call by value-result. The non-local varia-
bles are treated as in out parameters. The return value of a
function is treated as an out parameter, whose name is the
same as the function name. So a function can be treated as

equal to a procedure.

To obtain callees’ dependence on callers, we need to
gather all calling information of a procedure (such as A),
i.e., the slice information of all call statements for calling
A. In such calling information, there may be some given la-
bels which need to be determined.

Therefore, we analyze the interprocedural slicing in two
phases corresponding to the above dependence relations. In
phase 1, we capture the callees’ influence on callers when
analyzing call statements. Meanwhile, we record for phase 2
some calling information of call statements. In phase 2, we
determine( backfill/replace) all given labels in the calling in-
formation gathered in phase 1. Now we can obtain the final
slice results of all procedures.

Phase 1 should pay much attention to call statements, and
other statements can be analyzed in the same way as in the
intraprocedural slicing method. According to the analysis
above, the procedure call statements are as easy to handle as
other statements(e. g. special loop statements). When ana-
lyzing statements with procedure calls, the monadic slices of
the actual-parameter variables can be converted to those of
the corresponding formal-parameter variables. Such slices of
formal parameters can be obtained by the intraprocedural
monadic slicing, and the results can be reused. Therefore, af-
ter the statement s with a procedure call is analyzed, the
monadic slices of each variable x in lkpSli(x, Tcall) need to
be updated as follows:

(IkpSli( a, Tproc) — )»ERE[J_(M) {I,}u
(“E RLegw)lkpSH(y, Tcall) U {l} UL)

where Tcall is the table slice at the call site; a and b are the
corresponding formal parameters of x and y, respectively; [,
is the given label; [ is the label of the call statement; and L
is the label which may influence the execution of the call
statement.

In this way, the interprocedural monadic slicing is conver-
ted to a set of independent single intraprocedural monadic
slicings. In phase 1, the procedures should be analyzed in a
given order. This can be done by a call-relation set or call
graph. For more details, see Ref. [ 12] where the analysis
order of recursive procedures is also discussed.

For serving phase 2, we gather the calling information at
call statements. Concretely, at each call statement, we record
the information of all actual parameters as follows:

{1} U L U IkpSli(ide, getSli)

where ide is an actual parameter. Such information is saved
in the table Lcall, which consists of several sub-tables, each
representing the corresponding sets of all formal parameters
of a procedure.

Phase 2 captures the callees’ dependence on callers, and
obtains the final slice table Tp of a procedure by determining
all given labels in the table Tproc of this procedure.

To capture the callees’ dependence on callers, we com-
pute the corresponding sets( with no given labels) of all for-
mal parameters through the table Lcall with given labels. We
analyze in the reverse order of that in phase 1. For example,
if procedure A calls procedure B, we compute the corre-
sponding sets of all formal parameters in A before doing
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those in B. For convenience, we write Lcall(A, a) to repre-
sent the corresponding set of the formal parameter a in A. If
there is a given label /, in Lcall( B, x), where x and a are re-
spectively the formal parameters in B and A, we replace [,
with all the elements of Lcall(A, a). Since we begin to ana-
lyze B after doing A, there will be no given labels in Lcall
(A, a). As aresult, we can obtain the final Lcall( B, x) with
no given labels.

Through Lcall with no given labels, we can easily obtain
the final slice table Tp of a procedure. In the concrete, we
can first copy the table Tproc of a procedure(e. g. C)as Tp,
then replace each given label, say /,, in Tp by all elements
of Lcall( C, b), where b is one of the formal parameters in
C. The resulting table Tp( with no given labels) is the final
monadic slice table of C.

As for the extension of the language W with procedures,
its syntax is as follows:

D: : =procedure ide(arg,, ..., arg,) is S

S:: =call 1. ide (ide,, ...,ide,) | ... as before ...

where D belongs to the domain of declarations. We need to
add some slice operators into the semantic descriptions of
procedures, shown as follows:

[call [.ide(ide,, ..., 1ide,)]
= AL. {loc,«IlkpEnv(ide,, rdEnv); ...;
loc,«—lkpEnv(ide,, rdEnv) ;
L.« {I}ULU IlkpSli(ide,, getSli); ...;
L., {I}ULU IkpSli(ide,, getSli);
proc<—lkpEnv(!. ide, rdEnv) ;
Tcall « getSli;

proc(loc,, ..., loc,, );
setSli( Tproc _ide) ;
updSli (arg,, U (IkpSli(arg,, getSli) - {1,}) U

arg, e Dep(ide, arg,
L, getSli);
..; updSli (arg,,, arg,EDe%(Jid& o)
{li Hu L, getSli) ;
Tpcall «<—getSli;
setSli( Tcall) ;
updSli(ide,, IkpSli(arg,, Tpcall), getSli) ;

(IkpSli ( arg,, getSli) -

updSli(ide,, IkpSli(arg,, Tpcall), getSli) ;
Lcall(ide) «— Lcall(ide) U
[(arg,,L.), ..., (arg,, L) ]
}
[ procedure ide(arg,, ..., arg,: in out)is S]
= {let proc = Aloc, ...loc,. {p«—rdEnv;
p'<—{xtdEnv(arg,, IkpSto(loc,), p);
...; xtdEnv(arg,, IkpSto(loc,), p) };
if Tproc = Null then
Tini « [(arg,, {/,}), ..., (arg,, {[,D];
setSli( Tini) ;
inEnv p' [S];
updSto( loc,, IkpSto(lkpEnv(arg,, rdEnv)));
...; updSto(loc,,,
IkpSto( IkpEnv(arg,, rdEnv)));
Tproc _ide «— getSli;

Forall i,j:l1< =i <=n ANl<=j <=n
if /; e IkpSli(arg,, getSli) then
Dep(ide, arg,) «—Dep(ide, arg,) U {arg;};
b
xtdEnv(ide, return proc,p’)

}

For obtaining the final results of monadic interprocedural
slicing, we also need to add the rules below to the definition
of Syn (s, L) given in Refs. [6 —7]:

“procedure ide(arg,, ..., arg,)is S”:
if Syn(S, L) = ¢ then ¢

else “procedure ide(arg,, ..., arg,)is S~
“call [. ide(ide,, ..., ide,) ”:
if [ e L then “call [. ide(ide,, ..., ide,)”

else ¢
4 A Case Study and Complexity Analysis

To illustrate our two-phase interprocedural slicing algo-
rithm further, we consider a concrete program'” as follows:

Procedure Main()

1 sum: =0;

210 =1;

3 while i <11 do

4 call A(sum,i);
endwhile

Procedure A(x, y)

5 call Add(x,y);

6 call Inc(y);
skip

Procedure Add(a, b)

7 a: =a+b;
skip

Procedure Inc(z)

8 call Add(z,1);
skip

In phase 1, based on the call graph of the example pro-
gram, we can obtain the analysis order of the example pro-
gram as

Add—Inc—A— Main

Before analyzing procedures in this order, we need to ini-
tialize Tproc with the given labels; that is to say, Tproc _
Add, Tproc _Inc and Tproc A are initialized as [(a, {[,}),
(b, {1, D], [(z, {1.H] and [(x, {{,}), (¥, {,})], respec-
tively. At the same time, we make the other tables( such as
Tp, Dep, Lcall) null.

According to the analysis order, the procedure Add is first
analyzed. Since there is no call statement in Add, it is easy
to get its final slice table Tproc _ Add( given in Tab. 1)
through the intraprocedural monadic algorithm. From
Tproc _ Add, the dependencies among the formal parameters
in Add can be obtained(see Tab.2):

Dep(a) = {a, b}, Dep(b) = {b}

The 8h statement in Inc is a call statement. According to
the monadic algorithm in section 3, before entering Add, the
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temporary label sets representing the dependence need to be
computed:

Le, = {8} ULUIkpSIi( z, getSli) = {8, .}
Lo, ={8) U L={8)

Tab.1 The slice table Tproc

Proc Var Labels
(7,0, 1,}
Add “ b
b {l,}
Inc z {7,8,1.}
A X {5.7.1..1,}
y {6,7,8,1,}
. sum {1,2,3,4,5,7}
Main
i {2,3,4,6,7,8}

Tab.2 The dependence table Dep

Proc Var Dep
A x {x. y}
y (v}
b
Add ¢ e b}
b {b}
Inc z {z}

This is also the calling information that should be saved in
the table Lcall ( shown in Tab. 3). Because Add has been
analyzed, we can obtain the table Tpcall directly from
Tproc _ Add and Dep. With the help of Tpcall, we update
Tcall according to the relationship between the formal and
the actual parameters. Since the 8h statement is also the last
statement in Inc, Tproc _Inc(see Tab. 1) can be obtained by
copying the Tcall. Moreover, the dependencies among the
formal parameters can also be obtained ( shown in Tab. 2):
Dep(z) ={z}.

Tab.3 The table Lcall

Proc Var Labels
A X {1,2,3,4}
y {2,3,4}
a {5.8,1,,1.}
Add b {5.8,1,}
Inc z {6,1,}

Similarly, we analyze A and Main in turn, and obtain the
tables Tproc _A, Tproc _Main, Lcall and Dep.

In phase 2, the main work is to replace all given labels ap-
pearing in the corresponding sets of formal parameters ( in
Lcall) . The analysis order for replacing is the reverse one in
phase 1:

Main — A — Inc — Add

Since Main has no formal parameters, we need not replace
it. Because the corresponding set of A (in Lcall) has no giv-
en label, we also need not replace it. There is a given label [,
in the Lcall(Inc, z) (shown in Tab. 3), so we need to re-
place [, with all the elements of Lcall(A, y). Now Lcall
(Inc, z)is updated to {2, 3,4, 6}, which has no given label.
Similarly, we can obtain the Lcall( Add, a) and Lcall( Add,

b) with no given labels, and the final results are shown as
follows:

Lcall(A, x) ={1,2,3,4}
Leall(A,y) ={2,3,4}
Lcall(Inc, z) ={2,3,4,6}
Lcall(Add, a) ={1,2,3,4,5,6,8}
Lcall( Add, b) ={2,3,4,5,8}

Through the new Lcall, we can obtain the final slice tables
Tp( given in Tab. 4) from Tproc by replacing their corre-
sponding given labels.

Tab.4 The final slice table Tp

Proc Var Labels
) sum {1,2,3,4,5,6,7,8}
Main
i {2,3,4,6,7,8}
s X {1,2,3,4,5,6,7,8}
¥ {2,3,4,6,7,8}
Inc z {2,3,4,6,7,8}
a {1,2,3,4,5,6,7,8}
Add
b {2,3,4,5,8}

On the basis of the complexity of the intraprocedural
slicing algorithm in Ref. [7], we discuss in this section the
complexity of our two-phase monadic slicing algorithm in
section 3. Besides the cost of the intraprocedural slicing al-
gorithm, the interprocedural slicing algorithm needs addi-
tional time cost for call statements and backfilling ( repla-
cing) given labels, and additional space for saving the Hash
tables Tp, Dep and Lcall.

We first suppose s, p and m are the numbers of call state-
ments, procedures and labeled expressions in the entire pro-
gram, respectively; para is the largest number of formal pa-
rameters in any procedure, and v is the largest number of
variables in any procedure. Then, we will analyze the time
cost of the additional parts mentioned above. Each call state-
ment will cost time O( para x para) . The set of reference pa-
rameters in procedures may cost time O(p X para X para).
Thus, the total cost in phase 1 of the algorithm is O('s x para
X para + p x para X para). In phase 2, obtaining the new
corresponding sets may cost O( para X p X para X p), and it
may cost O(p x v x para) to obtain the final Tp; thus, the
total cost is time O(para X p x para X p + p x para X v). So
the additional time cost is O(s X v X para + para X p X para x
p+p Xxparaxv).

As for the space complexity, we also only focus on the
additional parts—Tproc, Tp, Dep and Lcall. In the worst
case, the table Tproc, Tp, Dep and Lcall may need space O
(vxpxm), O(vxpxm), O(p x para x para) and O( para X
p x m), respectively. Therefore, the total space cost of the
additional parts is O(v X p X m + p X para X para + p X para
X m).

According to the complexity analysis, our algorithm has
less complexity than the SDG-based algorithms( since SDG
need not be constructed in our algorithm).
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5 Conclusion

In this paper, we propose an approach for interprocedural
slicing, i. e. , backfilling-given-labels based two-phase mon-
adic slicing, which is based on modular monadic semantics
of programming languages. With the introduction of given
labels, our method can obtain similar summary information
for addressing the calling-context problem.

Compared with the SDG-based interprocedural slicing
methods, our method only needs to save some tables such as
Tp, Dep and Lcall. Instead of maintaining a SDG which may
cost much space, our method saves some space. In addition,
our monadic algorithm is not less precise than SDG-based
ones as shown from the examples in section 4. This is be-
cause the term L and U )lkpSIi (r, getSli) in the defini-

reRefs(l. e
tion of L' can accurately capture control dependences and

data dependences respectively, which are the bases of SDG-
based algorithms.
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