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Abstract: A new type of vehicle routing problem ( VRP),
multiple vehicle routing problem integrated reverse logistics
(MVRPRL), is studied. In this problem, there is delivery or pick-
up (or both) and uncertain features in the demands of the clients.
The deliveries of every client as uncertain parameters are
expressed as triangular fuzzy numbers. In order to describe
MVRPRL, a multi-objective fuzzy programming model with
credibility measure theory is constructed. Then the simulation-
based tabu search algorithm combining inter-route and intra-route
neighborhoods and embedded restarts are designed to solve it.
Computational results show that the tabu search algorithm
developed is superior to sweep algorithms and that compared with
handling each on separate routes, the transportation costs can be
reduced by 43% through combining pickups with deliveries.
Key words: reverse logistics; pickup and delivery; credibility
measure theory; tabu search algorithm; fuzzy simulation

ith the increasingly serious pollution of the environ-
ment, reverse logistics has attracted more and more
attention. How to integrate forward logistics and reverse lo-
gistics to reduce transportation costs is a problem logistics
enterprises concern highly. In this paper, the problem is
called vehicle routing problem integrated reverse logistics
(VRPRL). It is often encountered in practice, for example,
firms delivering products on pallets recover the pallets for
reuse. Retail stores delivering appliances may take away old
appliances as a service to their customers. Firms leasing of-
fice equipment may pick up and recycle used equipment to
be refurbished and leased again or sold. Products previously
sold and delivered may need to be returned for inspection,
rework, and resale as in the case of auto engines which expe-
rience quality problems. Bottlers may recover the container
portion of their products when deliveries of the fresh product
are made. Some countries, such as Germany, have gone as
far as to legislate that some industries must take back all
sales packaging materials. Japan has similar legislation and
the United States has numerous laws on solid waste reclama-
tion'"". China has also some laws on electronic waste recla-
mation'”'. Frequently, some or all recovered materials are
handled in conjunction with deliveries.
Compared with general vehicle routing problems ( VRP),
there are three features for VRPRL: 1) Each client requires
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either a delivery or a pick-up operation( or both) of a certain
amount of goods or waste. That is to say, the vehicle may
deliver and pick-up simultaneously. 2) The quantity of the
delivery of each client is uncertain'>™ . In this research it is
assumed that the quantity of the delivery is a triangular fuzz-
y variable. 3) The computational complexity has greatly in-
creased. It is known that the VRP is NP-hard. However, VR-
PRL is much more difficult than VRP. VRP under certainty
is a special example of VRP under uncertainty. So feasible
solutions space under uncertainty is much larger than under
certainty.

In many researches only the objective of the traveling dis-
tance is minimized. In fact, it is necessary that the number of
vehicles should be reduced as much as possible to decrease
the fixed costs and the number of drivers. To minimize the
objectives of the number of vehicles and traveling distances,
a programming model fuzzy-theory-based credibility meas-
ure is constructed in this study. Contrasted with the possibili-
ty measure, the credibility measure plays a probability
role'* .

In vehicle routing problems under uncertainty, the planned
routing solution is generally derived from a given confidence
level. However, additional costs will be generated, because
the planned routes fail in practical environments. For this,
the decision-maker hopes more to find a solution which min-
imizes the sum of planned costs and additional costs. There-
fore, in this paper the additional costs are also involved in
the objective function.

Aimed at the computation complexity of the problem, the
tabu search algorithm is employed to solve the VRPRL,
since it possesses very good qualities regarding combination
optimization. In this paper, complex neighborhoods combi-
ning inter-route and intra-route neighborhoods and restarts
are embedded in the tabu search algorithm. Then the devel-
oped tabu search algorithm and fuzzy simulation are inte-
grated to solve the problem.

1 Related Literature Review

To our knowledge, the VRPRL in which each customer
has both a pick-up demand and a fuzzy delivery demand has
rarely been researched. Related works with VRPRL are vehi-
cle routing problems with simultaneous pick-up and delivery
under certainty( VRPSPD) and forward vehicle routing prob-
lems without pick-up or reverse vehicle routing problems
without delivery under uncertainty. As for the former, Min"”!
first introduced vehicle routing problems with simultaneous
pick-up and delivery and proposed a cluster first and second-
ly a route approach to solve a problem of transporting books
between libraries by two vehicles. Dethloff'® studied the
problem from the perspective of reverse logistics. He pro-
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posed a mathematical formulation for VRPSPD and devel-
oped insertion heuristics based on the concept of residual ca-
pacities. Salhi and Nagy'” proposed a local search heuristic
that considered solutions with a certain degree of infeasibili-
ty. Chen et al. "™ presented a heuristic based on the record-
to-record travel and tabu lists. In those researches mentioned
above, simultaneous pick-up and delivery are considered, but
uncertainty has not been taken into account.

As far as the vehicle routing problem under uncertainty is
concerned. It includes stochastic vehicle routing and fuzzy
vehicle routing. There are a few papers which used fuzzy
theory to research them. Teodorovi¢c and Pavkovic'” first
used fuzzy variables to deal with these uncertain parameters
in the vehicle routing problem( VRP) and designed the sweep
algorithm to solve it. Zheng et al. " modeled the vehicle
routing problem with time windows( VRPTW) with credibili-
ty measures and proposed a hybrid genetic algorithm. Te-
odorovic et al. """ studied stochastic vehicle routing prob-
lems. Although they researched vehicles routing problems
under uncertainty, reverse logistics is not integrated into for-
ward vehicle routing.

In addition, Alshamrani et al. """ studied VRPRL with sin-
gle vehicles under stochastic environments and developed a
heuristic procedure for it. Nevertheless, in some new sys-
tems, it is hard to describe the parameters of the problem as
random variables because there are not enough data to ana-
lyze. On the other hand, multiple vehicle routing problems
are in fact often encountered.

So aimed at the lack of the past researches, VRPRL with
multiple vehicles under fuzzy conditions is presented. Then
the developed tabu search algorithm and fuzzy simulation
are integrated to solve it.

2  Fuzzy Model for MVRPRL
2.1 Descriptions of MVRPRL

Multiple vehicle routing problem integrated reverse logis-
tics (MVRPRL)is described as that of a set of vehicles dis-
patched from the distribution to clients who need deliveries
or pickups (or both). The aim is to find a route plan which
minimizes both the number of vehicles and the sum of
planned routing costs and the additional costs due to failure.
In order to make the model, we assume that: 1) Positions of
distribution centers and clients are known; 2) Neither the
pickups nor the deliveries of every client are greater than the
capacity of the vehicle where the former is certain but the
latter is uncertain which is expressed as triangular fuzzy
numbers; 3) All the vehicles have the same capacity;4) When
the vehicle arrives at client i, it will return to the distribution
center to unload if its surplus space is less than the net deliv-
ery amounts of client i. Then it returns to continue to serve
client 7;5) The requirements of every client must be satis-
fied, visited only once and served by only one vehicle.

2.2 Computation based on credibility theory

Some basic concepts and results on fuzzy variables were
introduced by Zheng et al. """ . Now a triangular fuzzy varia-
ble & = (r,, r,, r;) is considered. From the definitions of
possibility, necessity and credibility, it is easy to obtain

1 if r<r,
r,—r .
Poss(e=r) = ifr,<rs<r, ()
ry=r,
0 if r=r,
1 if r<r,
r,—r .
Nec(e=r) = if r,<r<r, (2)
r,—r
2 1
0 if r=r,
1 if r<r,
2r,—r, -1 .
m 1frl$r$r2
2 1
Cr(e=r) = . (3)
3 .
m 1fr2Sr$r3
3~
0 if r=r,

An arrangement of L client is generated randomly, as (i,
iy, ...,i;_,, ;). Then the client is assigned in turn to the ve-
hicle. After it has served i’ clients, whether the vehicle
serves the next client i or not depends on whether the sum of
forward delivery amounts is less then the capacity of the ve-
hicle and the sum of net delivery amounts is less than sur-
plus capacity S, or not. We obtain constraints (4) and (5).

L
S =0-Ypy, =0 kek (4)
j=1

Cr(SQ - Z(le —-P) Vi 20) =a
£
ke K;i =1,2,...,L (5)

where Q is the capacity of the vehicle; p, is the pickup de-
mand of the client i; Zl,. is the delivery demand of the client
i; K is the set of vehicles or routes, K ={1,2, ..., m}; and
¥, 1s the decision variable.

If both constraints (4) and (5) are satisfied, the vehicle
continues to serve client i. Eq. (5) is computed based on
Eq. (3). Consequently, we have the following fuzzy model
for MVRPRL.

2.3 Fuzzy model for MVRPRL

The corresponding mathematical formulation is given by

m L

L
min» » Y C,x,, minm (6)
k

=1 i=0 j=0

L
Q-Ypy =20 kek (7)
j=1

Cr(Sk - (4, —pj)yjkBO) =a
i=l

kekKi=12 ..L (8)
Yoy =1 i=1,2,..,Like K 9)
k=1
L
Nxp =y J=12..LkeKk (10
i=0
L
Noxp =y. i=12..Lkek (11)
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U, -U, +Lx; <L -1 i,je Like K (12)
m L m L _
Y - > Db =d, —p, (13)
k=1 j=0 k=1 j=0
X; =0orl i,j =0,1,...,L;k e K (14)
Yy =0orl i=1,2,..,Like K (15)
U, =0 iel,2, ..., Like K (16)

Cr(i, =0) =1 i,j =0,1,...,L;k e K (17)
where L is the total number of clients; d, = (d,, d,, d;) is
the delivery demand of client i; C; is the traveling distance
from client i to j, i,j=0,1, ..., L; x; =1, if point i immedi-
ately precedes point j on route k, otherwise 0; y, =1, if client
i is served by vehicle k, otherwise 0; L is the load on arc ij
of vehicle route k; U, is the auxiliary variable for sub-tour
elimination constraints on route k.

The objective function seeks to minimize the total trave-
ling distances and the number of vehicles. Constraints (7)
and (8) are forward delivery and reverse pickup constraints,
respectively. Constraint (9) ensures that each client is visited
by only one vehicle; constraints (10) and (11) denote that
each client is visited only once. Constraint (12) guarantees
that sub-tours are eliminated. Constraint (13) is a flow con-
servation equation. Constraints (14) to (17) define the na-
ture of the decision variables.

3 Simulation-Based Tabu Search Algorithm

Since the MVRPRL is the NP-hard problem, the tabu
search algorithm is employed to solve it. First an initial fea-
sible solution is created using a sequential insertion method
that constructs one route at a time until all the customers
have been included on the route. Then it is improved by the
tabu search algorithm. In order to minimize the number of
vehicles, a penalty value is added to the objective value
when the number of vehicles increases. If the best solution is
not updated before a certain number of iterative times are
completed, a restart will be applied to the solution.

3.1 Initial solutions

Step 1 Randomly generate vertex v, and form the vertex
sequence (Vy, V,, Vi, s -oos Vi Vi Vas cees Vi) -

Step 2 According to constraints (4) and(5), starting
with v,, create routes by following the above vertex se-
quence and repeat this process until all the vertices are in-
cluded into the routes (see Fig.1).

Step 3 Compute the objective function value. It is com-
puted as section 3. 2.

Step 4 Repeat step 1 to step 3 for N cycles and choose a
solution for which the objective function value is the smallest.

3[4 2 s]7]¢[ ]

of clients

Random sequence l

‘0‘3‘ 4‘0‘ 1‘2‘5‘0k7k6|8‘0‘

Initial solutions

Fig.1 Generating the initial solution

3.2 Evaluation of solutions

The objective value of the traveling distance is the sum of

the planned cost and failed cost. It is possible that the
planned routing cannot satisfy the actual constraint at client i
because the delivery amount of client i is a fuzzy variable. If
the planned routing fails, the vehicle will return to the depot
to unload. Then the vehicle arrives at client i from the depot
again to continue. The additional cost is regarded as failed
cost (f_c, in short).

The failed value is calculated by a fuzzy simulation meth-
od. The procedure of calculating the failed value is described
in more detail below.

Set f ¢=0 and Sum =0
Fori=1to N
Do
generate randomly a value d in (d,, d;) and calculate
membership values u.
generate randomly a value r in (0, 1).
If u > r then d is accepted.
Loop until all the clients generate actual delivery values.
Calculate the failure cost according to the actual values
generated above;
Sum = Sum +f _c;
Next i
Set Sum = Sum/N.
Note that N is set to be 10 in this paper.

3.3 Tabu search

The tabu search algorithm is a heuristic method designed
to guide other methods, including local search algorithms, to
escape local optima. It has shown superiority over other heu-
ristic algorithms in classical vehicle routing problems. There-
fore, the tabu search algorithm we developed is employed for
the MVRPRL in this paper. And inter-route and intra-route
neighborhoods, including four types of movements: swap
move, shift move, 2-opt and Or-opt, are applied to it. After
each neighborhood search is finished, the best non-tabu can-
didate solution is put into the tabu lists and the current solu-
tion and best solution which is generated in all the iterations
so far are updated. If the best solution is not updated before
a certain number of iterations are completed, a restart is ap-
plied to continue to complete the surplus iterations.

3.3.1 Neighborhood structure

In our implementation, four different classes of neighbor-
hood moves are applied to the current solution. (1, 1) swap
move and (1,0) shift move are introduced by Fu et al. s
They are selected for inter-route improvement and 2-opt and
Or-opt for intra-route improvement.

1) (1, 1)swap move. Exchange the positions of two select-
ed vertices on two different routes.

2)(1,0) shift move. Remove the first selected vertex from
its current position on a tour and insert it into some position
on another one.

3) 2-opt. This method was introduced by Lin'"*'. In this
procedure, two links which are not adjacent to each other are
removed from the same route and the segments are recon-
nected in all possible ways.

4) Or-opt. This procedure was introduced by Or'"”'. In this
procedure, a sequence of three consecutive clients, two con-
secutive clients, or a single client on a tour is removed and
inserted to another location on the same route.

3.3.2 Tabu lists
Tabu lists are established for every movement. The tabu
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lists contain the move attributes of solutions during the last
three to seven iterations.
3.3.3 Stopping criterion

The search is terminated when the total specified number
of iterations has elapsed.
3.3.4 Restarts

If the current solution is not improved after certain num-
ber of iterations, the best solution so far is set as the current
solution and continues to be searched.

3.3.5 Tabu search algorithm procedures

The following variables are used in the description of the
tabu search algorithm:

Iter is the current number of iterations; max _ iter is the
maximum number of iterations; cons_ iter is the current
number of consecutive iterations without any improvement
to the best solution so far; max _cons _iter is the maximum
number of consecutive iterations without any improvement
to the best solution so far. The tabu search algorithm is de-
scribed in pseudo-codes by VB language as follows:

Set iter and cons _iter to O;

Generate an initial feasible solution and set this solution
as the current solution and the best solution so far.

Do While(iter <max _iter)

Select one of the four types of the neighborhood
methods randomly;

Add the solution produced by the selected move to the
candidate list;

Select the best non-tabu candidate solution
Set the new solution as the current solution, update
the tabu list and increment iter;

If the new solution improves the best solution so far,
update the best solution so far; and set cons _iter to 0; other-
wise, increment cons _iter;

End if

If cons _iter=max _cons _iter

Restarts

End if

Loop

4 Numerical Experiments

This TS heuristic has been programmed using Visual Bas-
ic 6.0 and implemented on a Pentium VI PC running at
1. 60 GHz with 128 MB RAM. To test the computational per-
formance of the heuristic, we compare it with the sweep al-

gorithm'”’ .

In square [0,40 km] x [0, 40 km], 20 clients are genera-
ted randomly. The sum of delivery and pick-up of each cli-
ent is generated randomly at [0, 3.5 t], then the delivery
and pick up of each client is distributed as follows: for each
customer j, a ratio r; = min{x,/y;, y,/x;} is calculated, where
x; and y; are the coordinates of customer j. The pickup level
of client j is then set to be (1 — r/.) ts where £ is the total

demand of client j. In this paper, d, is set to be %rjtj, d,is

set to be %rjtj; d, is set to be rit; x and y coordinates of
the depot are (0, 0) . The capacity of the vehicle is 6 t. These
basic data are described in Tab. 1 in detail. Computational
parameters are set as follows: max _iter = 500; max _cons _

iter =100.

Tab.1 Basic data of the clients

Client x/ v/ Delivery levels Pickup levels
number km km of clients 't of clients 't
1 32.1 28.7 (0.36,0.72,1.08) 0.13
2 12.3 17.6 (0.14,0.28,0.42) 0.18
3 23.4 2.0 (0.04,0.09,0. 13) 1.37
4 25.6 38.5 (0.11,0.22,0.33) 0.17
5 10. 8 39.9 (0.21,0.42,0.62) 1. 68
6 30.3 25.8 (0. 60, 1.20,1.79) 0.31
7 14.8 9.4 (0.49,0.97, 1. 46) 0. 84
8 3.5 23.8 (0.16,0.31,0.47) 2.73
9 35.6 22.3 (0.58,1.17,1.75) 1.05
10 34.9 32.4 (1.02,2.04,3.06) 0.24
11 2.9 0.9 (0.14,0.29,0.43) 0.97
12 2.1 8.2 (0.22,0.44,0.67) 1.93
13 14.6 32.0 (0.33,0.67,1.00) 1.20
14 337.0 81.0 (0.18,0.35,0.53) 1.67
15 16.0 31.3 (0.14,0.27,0.41) 0.39
16 23.7 24.3 (0.29,0.59,0.88) 0.02
17 34.3 13.4 (0.10,0.21,0.31) 0.49
18 1.3 5.9 (0.10,0.19,0.29) 1.01
19 12.3 3.0 (0.10,0.20,0.29) 0.91
20 15.6 3.2 (0.23,0.46,0.70) 2.70

Tab. 2 compares the average values, the best values and
the worst values obtained by the tabu search algorithm we
developed with the results obtained by the sweep algorithm

Tab.2 Comparisons of computational results

Tabu search algorithm

Sweep algorithm

Credibility
level Average The best The worst ~ Average number Average The best The worst ~ Average number
result result result of vehicles result result result of vehicles

0 295.0 287.0 301.6 4 493.1 481.2 500. 3 4

0.1 295.0 287.0 301. 1 4 494.0 481.2 500.3 4

0.2 295.3 287.0 297.6 4 496. 1 490.7 501.0 4

0.3 293.8 287.0 297.6 4 495.4 482.5 509.0 4

0.4 295.3 288.9 300.7 4 502. 1 462.9 520. 1 4.8

0.5 295.3 287.0 301. 1 4 500. 4 466. 4 526.7 4.5

0.6 290. 6 287.0 301.5 4 479.8 463.3 552.7 4.7

0.7 296.3 287.0 304.5 4 440.5 440.5 440.5 5

0.8 307.5 291.3 312.6 4 439.8 439.8 439.8 5

0.9 312.0 300. 6 316.9 4 453.9 453.9 453.9 5

1.0 315.6 313.1 326.3 4 453.9 453.9 453.9 5
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at various credibility levels. This table confirms the superior-
ity of the developed tabu search algorithm. It is clear that the
results obtained by the developed tabu search algorithm are
superior to the results obtained by the sweep algorithm in the
average values, the best values and the worst values at vari-
ous credibility levels. As shown in Fig. 2, the differences in
the results of the two algorithms are seen more clearly. The
best objective value is 287. 0. Corresponding to it, the best
operational plan is

Vehiclel 0—-3—14—17—6—16—15—13—52—0;
Vehicle 2 0—12—18—0;
Vehicle 3 0—-11—-19—-20—-7—0;
Vehicle 4 0—8—5—4—10—1—-9—-0.
600
300 %
4(x) -
Z 300 —t—a— —t—t—tt
S
200 [ —— Average of TS = Average of sweep
| ——The best of TS —— The worst of sweep
100 " . The worst of TS —— The best of sweep
0 ]

0 0.2 0.4 0.6 0.8 1.0
Credibility level

Fig.2 Curves of comparisons of computational results

Furthermore, when the operational plan is performed, we
have

Cr(S, = X (& =p)y, =0k e Kii =1.2....L) =0.73
i=1

And the runtime is less than 60 s.

Theoretically speaking, constraint(5) tells us that if the
credibility level of the optimal solution is more than « or
equal to «, the optimal solution will be searched when the
credibility level is set to be a <. The third column of Tab.
2 shows that the best solution is obtained at the credibility
level from O to 0. 7(except for 0. 4). Although at the credi-
bility level of 0. 2 the best solution is not obtained, objective
value (288.9) obtained is close to the best value(287.0).
And Fig. 2 shows the stabilization of the solutions obtained
by the tabu search algorithm we developed.

Tab. 3 computes respectively transportation costs of for-
ward logistics and those of reverse logistics. Their total costs
(503.2) are more than the transportation costs combining
forward logistics and reverse logistics (287. 0) according to
Tab. 2. That is to say, through transportation integrating re-
verse logistics into forward logistics, transportation costs are
reduced by 43% . So transportation integrating reverse logis-
tics into forward logistics is economical.

Tab.3 Respective transportation costs of
forward logistics and reverse logistics

Total Forward logistics Reverse logistics
costs Cost  Number of vehicles Cost Number of vehicles
503.2 276.9 4 226.3 2

5 Conclusion

Multiple vehicle routing problem integrated reverse logis-
tics is studied, in which each client requires either a delivery

or a pick-up operation (or both) of a certain amount of
goods or waste and the quantity of the delivery of each cli-
ent is uncertain. Aimed at these features, a multi-objective
fuzzy programming model with credibility measure theory is
constructed to formulate MVRPRL where the objectives
minimize the number of vehicles and the sum of the planned
objective values and the failed values. Due to the computa-
tion complexity of the problem, the tabu search algorithm
combining inter-route and intra-route neighborhoods and
embedded restarts is proposed. Computational results show
that the best solution and the stabilization of the solution ob-
tained by the tabu search algorithm are obviously superior to
the results obtained by the sweep algorithm. And it is neces-
sary that reverse logistics be integrated into forward logistics
because the performance can enhance the load ratio of the
vehicle and save the cost of transportation.

Further research work may include MVRPRL with other
constraints, such as with time windows, or with large scales.

References

[1] Alshamrani A, Mathur K, Ballou R H. Reverse logistics: sim-
ultaneous design of delivery routes and returns strategies [J] .
Computers and Operations Research, 2007, 34 (2): 595 —
619.

[2] Da Qingli, Huang Zuqing, Zhang Qin. Current and future
studies on structure of the reverse logistics system: a review
[J]1. Chinese Journal of Management Science, 2004, 12(1):
131 —138. (in Chinese)

[3] Fleischmann M, Krikke H R, Dekker R, et al. A characteriza-
tion of logistics networks for product recovery [J]. Omega,
2000, 28(6) : 653 — 666.

[4] Liu B. Uncertainty theory [ M]. Berlin: Springer-Verlag,
2007.

[5] Min H. The multiple vehicle routing problem with simultane-
ous delivery and pick-up points [J]. Transport Research Part
A, 1989,23(4):377 —386.

[6] Dethloft J. Vehicle routing and reverse logistics: the vehicle
routing problem with simultaneous delivery and pickup [J].
OR Spektrum,2001,23(1):79 —96.

[7] Nagy G, Salhi S. Heuristic algorithms for single and multiple
depot vehicle routing problems with pickups and deliveries
[J]. European Journal of Operational Research, 2005, 162
(1):126 —141.

[8] Chen J F, Wu T H. Vehicle routing problem with simultane-
ous deliveries and pickups [J]. Journal of the Operational
Research Society, 2006,57(5):579 —587.

[9] Teodorovic D, Pavkovic G. The fuzzy set theory approach to
the vehicle routing problem when demand at nodes is uncer-
tain[J]. Fuzzy Sets and Systems, 1996, 82(3):307 —317.

[10] Zheng Y, Liu B. Fuzzy vehicle routing model with credibility
measure and its hybrid intelligent algorithm [J]. Applied
Mathematics and Computation, 2006, 176(2): 673 —683.

[11] Teodorovic D, Pavkovic G. A simulated annealing technique
approach to the vehicle routing problem in the case of sto-
chastic demand [ J]. Transportation Planning and Technolo-
gy, 1992,16(4):261 —273.

[12] Gendreau M, Laporte G, Séguin R. An exact algorithm for the
vehicle routing problem with stochastic customers and de-
mands[J] . Transportation Science, 1995,29(2):143 —155.

[13] FuZ, Eglese R, Li L Y O. A new tabu search heuristic for the
open vehicle routing problem[J]. Journal of the Operational
Research Society, 2005,56(3):267 —274.

[14] Lin S. Computer solutions of the TSP[J] . Bell System Techni-
cal Journal, 1965, 44(10) : 2245 —2269.



Multiple vehicle routing problem integrated reverse logistics with fuzzy reverse demands 227

[15] Or I. Traveling salesman-type combinational problems and Illinois, USA: Northwestern University, 1976.
their relation to the logistics of blood banking [ D]. Chicago,

o) 75 SR AR M HY 25 2 4 £ 1 5% 1) I &k o) R
F & BmRAN

(" RBRF2FERER, B 210096)
C HRRLKF LFE, &R 210031)

WE AR T — R0 E MR FM(VRP) ——#518 G i) % & 4% 2% 7 4 (MVRPRL) . 1% 7] A 69 45 &2

BEP TARREF LR, M BEPF AR ELAEREZHNATH . GANZABMBETEF AR E, &

ZTATHEMEGCER RN S AAFEA RE30H T A TEMG Rt 22 F 3 R Rz AR R 7 kit
HR R K AB, JE R B AL R P RN R LR R Fo 25 25 18] P 5 ) R ARBARAE, M LR A T EAR K. i HERE

Wiz xR TR AR, EeE M AL EE G5 RliZmZ el ) T 43%.

KBREEOMR;ER—R B ERS ,ﬁzé’&’? ok BRI B

HE 525 F505



