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Abstract: For two integers k and d with (k,d) =1 and k=2d, let
G be the graph with vertex set {0,1, ..., k—1} in which i is an
edge if and only if d< |i—j|<k - d. The circular chromatic
number y,(G) of a graph G is the minimum of k/d for which G
admits a homomorphism to G¢. The relationship between y.(G -
v) and y,(G)is investigated. In particular, the circular chromatic
number of G — v for any vertex v is determined. Some graphs
with ¥, (G - v) =x.(G) -1 for any vertex v and with certain
properties are presented. Some lower bounds for the circular
chromatic number of a graph are studied, and a necessary and
sufficient condition under which the circular chromatic number of
a graph attains the lower bound y —1 + 1/« is proved, where y is
the chromatic number of G and « is its independence number.
Key words: ( k, d)-coloring; r-circular-coloring; circular
chromatic number; Mycielski’ s graph

11 graphs in this paper are simple, finite and undirected.

The circular chromatic number of a graph is a natural
generalization of the ordinary chromatic number of a graph,
introduced by Vince'" in 1988, under the name star chromat-
ic number of a graph. Let k and d be two integers with 0 <
2d<k. A (k, d)-coloring of a graph G is a coloring ¢ of ver-
tices of G with k colors 0, 1, ..., k — 1 such that for any edge
xy, d< le(x) - c(y) |<k -d. The circular chromatic num-
ber y.(G) of G is defined as

x.(G) = inf{%z there is a (k, d)-coloring of G}

It was proved'' ™ that for finite graphs, the infimum is al-
ways attained, hence it can be replaced by the minimum. The
following is an equivalent definition of the circular chromat-
ic number of a graph given in Ref. [3].

Let C" be a circle of (Euclidean) circumference r. An r-
circular-coloring of a graph G is a mapping ¢ which assigns
an open unit arc ¢(x) of C" to each vertex x of G, such that
for every edge xy of G, c(x) Nc(y) = (). We say that a
graph G is r-circular-colorable if there is an r-circular-colo-
ring of G. The circular chromatic number of G is equal to

x.(G) =inf{r: G is r-circular-colorable }

Given two graphs G and H, a homomorphism from G to
H is a mapping f from V(G) to V(H) such that f(x)f(y) e
E(H) whenever xy € E(G). If there is a homomorphism
from G to H, we say G is homomorphic to H. Two graphs
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G and H are homo-equivalent if G is homomorphic to H and
H is homomorphic to G. Homomorphism can be viewed as
a generalization of graph coloring. It is easy to see that

x(G) =min{n: G admits a homomorphism to K, }

For two integers k and d with (k,d) =1 and k=24, let G;’
be the graph with a vertex set {0, 1, ...,k —1} in which ij is
an edge if and only if d< |i—j|<k-d. It is not difficult
to see that a (k, d)-coloring of a graph G is a homomor-
phism from G to G¢{. Thus, we have'”!

x.(G) = inf{%: G admits a homomorphism to GZ}

In the study of circular chromatic numbers, graphs G play
the same role as complete graphs in the study of chromatic
numbers.

In this paper, we first determine the exact value of the cir-
cular chromatic number of G{ — v for any vertex v in GY.
Then we prove that for any graph G with at least 3 vertices,
there exist two vertices « and v of G such that y (G —u —v)
=y.(G) —2. We also investigate graphs G for which y.(G
-v) =x.(G) -1 for each vertex v of G.

The lower bounds of circular chromatic numbers of a
graph G were also studied™ . Here we investigate the graphs
whose circular chromatic numbers attain the lower bounds.
We establish a necessary and sufficient condition under
which the circular chromatic numbers of a graph G attain the
lower bound y —1 +1/«, where y is the chromatic number of
G and « is the independent number.

1 About y (G -v)

In this section, we present some results concerning the cir-
cular chromatic numbers of G —v and G - e.

Theorem 1  Let k and d be two positive integers with k
=2d. If (k,d) #1, then y ( G: -v) =x.( GZ) =k/d for any
k-a
d-B
« is the smallest positive integer such that there is some inte-
ger B with ad =gk +1.

Proof Let [ k] denote the set {0, 1, ..., k — 1}. Then
V(G}) =[k]. Since G{ - v is the subgraph of G}, y.(G; -
v) <x.(G}) = k/d. Since G} is vertex transitive, without
loss of generality we may assume that v =d.

Casel (k,d)#1.

Suppose that (k, d) =¢> 1. Then it is easy to see that G|/
is homomorphic to G{ - d, therefore k/d = y.(G{!) <y.(G;
-d). Tt follows that y (G -v) =x.(G}) =k/d.

Case2 (k,d) =1.

Let « be the smallest positive integer such that there is
some integer B8 with ad =Bk + 1. In Ref. [5], Zhu defined a
mapping ¢: V(G{) \{d}IZ,__ as

vertex v of G‘Z. If(k, d) =1, then y ( Gf -v) = , Where
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c(i)=i-|{t|0<t<a:td mod k<i,teZ}|

where the multiplication fd is in the field Z, and the order td
< is the order of natural numbers. It is easy to verify that ¢
is a (k -, d - B) -coloring of G{ —d. Thus y.(G{ -v) <(k
-a)/(d-B).

Let S, = {td mod k | t=1,2, ..., a}. Then S, is a subset
of [k] with cardinality a. Let G} — S, be the subgraph of G|
induced by [k]\S,. We prove that G{ — S, is isomorphic to
G{®.For any j e [k]\S_, let x be the minimum positive in-
teger such that j +x is in [ k] \S, and j + x is adjacent to j in
G{. Then it is easy to see that if j#0 then x = d, and if j =
0 then x =d + 1. Furthermore, it is not difficult to check that
for anyj e [KI\S,, [[0,d +1]|N S, | =B +1and if j#
0 then |[j,j+d],NS, | =B (where [a,b], ={a,a+1,a+
2, ..., b} and the additions are taken modulo k). It follows

that G{ — S, is isomorphic to G; . Since G{ - S_ is a sub-

graph of G{ — d, we have

=~

-

d-p

x.(G{-d) =x. (G} -S,) =x.(G,*) =

Therefore, . ( GZ -v) =(k-a)/(d-B).

An r-interval-coloring of a graph G is a mapping g which
sends each vertex x of G to a unit length open sub-interval
g(x) of the interval [0, r], such that adjacent vertices are
sent to disjoint sub-intervals. It is well-known that the chro-
matic number y(G) of G is the least real number such that
there is an r-interval-coloring of G'*. An r-interval-coloring
of G corresponds to a mapping f from V(G) to [0, r) such
that 1 < |f(x) -f(y) | <r -1 for every edge xy of G and
fix) <r-1 for all xe V(G). Therefore any r-interval-colo-
ring of G corresponds to an r-circular-coloring of G.

Theorem 2" Let G be a graph and e be any edge of G,
then y (G —e) =y (G) - 1.

Proof Let e =xy be any edge of G and let G, =G —e.
Suppose that y,(G,) =r and let ¢ be an r-circular-coloring
of G,. For each vertex v of G,, c(v) is an open interval on
C’". We denote c(v) by (s,,s, +1),. Without loss of gener-
ality, we may assume that s =0. We then construct an (r +
1) -interval-coloring ¢’ of G as follows: ¢'(x) =c(x),c'(v)
=c(v) ifs,¢[r-1,0],,¢'(v) =(s,,s,+1) if s, e[r-1,
0),, and ¢'(v) =(r,r+1) if s, =0 and v#x. This implies
that y (G) <r+1. Thus r=x.(G —e) =x.(G) — 1. This
proves the theorem.

The equality in theorem 2 is attainable. An example with
X.(G-¢€) =x.(G) -1 for any edge e of G will be presented
later.

A graph G is k-vertex-critical if y(G) =k and y(G -v) =
k -1 for any vertex v of G.

Theorem 3 For any graph G with |V(G) | =2, there
exist two vertices u and v of G such that y (G -u—-v) =
X.(G) —2. Furthermore, if G is not isomorphic to K, then
the inequality is strict.

Proof Suppose that y(G) =n.If G is not n-vertex-criti-
cal, then there exists a vertex u of G such that y(G —u) =
n. Let v be any vertex of G — u, then clearly y(G —u -v) =
n —1, which implies y (G —u —v) >n —2. So we may as-
sume that G is n-vertex-critical.

Let u be an arbitrary vertex of G, since G is n-vertex-criti-
cal, we have (G -u) =n—-1. If G —u is not (n —1)-ver-
tex-critical, then there exists a vertex v of G such that y(G -
u —v) =n -1 which implies y (G —u —v) >n —2. Thus we
assume that G —u is (n — 1) -vertex-critical. That is for any
vertex v of G—u, y(G-u—-v) =n -2.Given an (n -2)-
coloring of G — u — v, by coloring the vertex v with a new
color n — 1, we obtain an (n —1)-coloring of G —u. If uv ¢
E(G), then we can color the vertex u with color n — 1 and
obtain an (n —1)-coloring of G. This contradicts y( G) = n.
As v is an arbitrary vertex of G —u, u is adjacent to all verti-
ces of G —u. Again, since u is an arbitrary vertex of G, we
conclude that G is exactly the graph K,. It is obvious that
x.(K, —u—-v) =n-2. This completes the proof of theorem
3.

An interesting problem involving the deletion of a vertex
was raised by Zhu™' as follows: Which graphs have the
property that the deletion of any vertex will decrease its cir-
cular chromatic number by exactly 1? Suppose G is a graph.
An extremely stable set of G is a nonempty subset S of V =
V(G) such that for any v € V\S, v is either adjacent to every
vertex of S or adjacent to no vertex of S. Zhu then posed the
following question: Is it true that if | V(G) | >2 and x.(G -
v) =x.(G) —1 for each vertex v of G, then G has a nontrivi-
al extremely stable set S(i.e.,2 < |S|< |V(G)|)? Here
we present two classes of graphs which have the property
that the deletion of any vertex will decrease their circular
chromatic number by exactly 1 but they will have no non-
trivial extremely stable set.

For a graph G with vertex set V and edge set E, the My-
cielskian of G, which was first introduced by Mycielski'*', is
the graph u(G) with vertex set VU V' U {u}, where V' =
{x":xe V},and edge set EU{xy:xye E}U{y'u:y e V'}.

The following theorem was proved in Ref. [9].

Theorem 4 For n=3, u(K,) is (n + 1)-critical and
X(u(K,)) =n+1.

One can easily verify that y (u(K,) - v) =y (u(K,)) -1
=n for any v of u(K,) and y (u(K,) —e) =x . (u(K,)) -1
=n for any e of w(K,). Following that we prove that

u(K,) has no nontrivial extremely stable set. This gives a
counterexample to Zhu’ s question.

Suppose, to the contrary, that S is a nontrivial extremely
stable set of w(K,). Let V(K,) ={v,,v,, ..., v,}. We con-
sider three cases.

Case 1 There is some i such that both x, and x; are in S.
Since u is adjacent to x, but not to x;, according to the defi-
nition of an extremely stable set, # must be in S. For each j
(#1), since v, is adjacent to v, and not to u, all v;s are in §.
And since v; is not adjacent to v; but adjacent to u, we have
all v/.' s are in S. Therefore, S =V(u(K,)). A contradiction.

Case 2 There is some i such that v, e S but v, ¢ S. If u
e S, then similar to case 1 we can prove that § =
V(u(K,)), therefore, a contradiction. Thus u ¢ S. Since S is
a nontrivial extremely stable set, there is some j( #i) such
that v, or v/ is in S. If v, € § then v; should be in § and it
should be reduced to case 1. So we assume that v/ € S. But
then we should have v, € S because v, is adjacent to v, and
not to v;. This is a contradiction.

Case 3 There is some i such that v e S but v, ¢ S. If u
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e S then all v;s are in S. And it follows that S = V(u(K,)),
a contradiction. Thus u ¢ S. Then there is some j such that
v, or v/’. is in S. Similarly as in case 2, one can reach contra-
dictions.

This proves that (K,) has no nontrivial extremely stable
set.

Given a graph G with vertex set V; = {v?, vg, s vg} and
edge set E, and an integer m=0, the generalized Mycielski-
an of G is the graph u, (G) with vertex set VUV, UV, U
..UV, U{u}, where V, = {v': v.? eV,}(i=1,2,...,m), and

met
edge set £, U ( U {ovl: o)

U (v iy e E)} U {v'uzv e V,}.
Clearly when m =0, u,(G) is the graph obtained from G by
adding a universal vertex u. And wu,(G) is just the Myciel-
skian w ( G) of G. The following theorem was proved in
Ref. [10].

Theorem 5 For n =3 odd and any integer m = 0,
u,(K,) is (k+1)-critical and y (u,(K,)) =n+1.

It is easy to check that y (u,(K,) —=v) =x.(u,(K,)) -1
=n for each vertex v of u,(K,). And similarly as above,
one can show that u,,(K,) has no nontrivial extremely stable
set.

2 Lower Bounds for y,.(G)
In Ref. [1], Vince proved that for any graph G,

X(G) >x(G) -1 (1)

Since there are graphs G whose circular chromatic number
can be arbitrarily close to y(G) -1, in this sense, this lower
bound for y (G) is sharp. However it can still be improved
in some sense. Zhou'" proved that,

1
Xx.(G) =x(G) -1 *2(G) (2)
and
_.x(6) ~1
X.(6) =x(G6) -1 (G ~1 (3)

where a( G) is the independence number of G and c(G) is
the length of a longest cycle of G. Using a result of Ref. [3]
below, we shall give a simple proof of the two above lower
bounds.

Lemma 1 For any graph G, y.(G) is equal to some
p/q, where p is at most the length of a longest cycle of G
and g is at most the independence number of G.

By lemma 1, suppose that y (G) =p/q for some p and g,
where p<c(G) and g<a(G).By Eq. (1),

Y.(G) =%>X(G) —1, p=((G) -1)g+1

p 1
—=2y(G) -1 +—=x(G) -1 4
q>X() +q>)(() + (4)

1
a(G)
By Eq. (4) we have

1 1
s _
I=x(6) =17 "x(G) -1

1 1 1
<

4q -
p x(G) -1 x(G) -1 ¢(G)

Hence,

P . x6) —1
q =y(G) 1+c(G) 1

For graphs G and K, let »( G) denote the number of verti-
ces of G, and (G, K) the maximum number of vertices in a
subgraph of G that admits a homomorphism to K. Bondy and
Hell™ proved the following two lemmas.

Lemma 2 Let G, H and K be graphs, where H is vertex-
transitive. If there is a homomorphism f: G—H, then

v(G, K) _v(H, K)
v(G) ~ w(H)

Lemma 3 y (G) <k/d if and only if G is homomorphic
to GY.

Theorem 6 For a graph G, let o,(G) = %max( \S, | +

\Sz | +... + \Si |) where “max” takes over all i pairwise

disjoint independent sets S|, S,, ..., S; in G. Then
G)
(6 =X 5
] (5)

Proof Suppose that y . (G) =k/d, by lemma 3, G is ho-
momorphic to G{. Consider the three graphs G, G| and K,,
by lemma 2, we have

v(G, K))
v(G)

v( Gy, K,)
= d
v(G)

hence

max( |S, [+ [S, | +...+ ‘S,-‘)>ﬂ
v(G)

Tk

where “max” takes over all i pairwise disjoint independent
sets S,,S,, ..., S, in G. And it follows that (5) is true.
Corollary 1  For any graph G,

G)

G) =46 6

A T (6)
v(G) . .

Note that o, <@, < ... < ¢, |, m is the biggest

among these lower bounds.

The following lemma was proved in Ref. [2].

Lemma4 If G is a graph on n vertices that has a (k, d) -
coloring with (k,d) =1 and k > n, then G has a (k’, d") -col-

. . k' k
th k' <k and — <—.

oring wi <kand <

The next lemma can be found in Ref. [5].

Lemma S Let G be a graph with y (G) = % if (k, d)
=1, then any homomorphism from G to G is surjective.

Theorem 7 Let G be a graph with chromatic number y
and independence number «, then y (G) =y -1 + 1/« if and

only if G is a spanning subgraph of G{ _, .
ence number «.

Proof If y.(G) =y -1 +1/a, then by lemma 4, v(G) =
(x —1)a + 1. On the other hand, by corollary 1, y, (G) =

v(G)/a. This means v(G) <(y —1)a + 1. Hence v(G) = (y

, with independ-
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-1)a + 1. By lemma 5, any homomorphism from G to

G(,_1)a+1 18 surjective. Thus G is a spanning subgraph of
G, 1)a+1 With independence number «. On the other hand, if

G is a spanning subgraph of G, ,,., with independence
number « and chromatic number y, then y. (G) <

X.(G{ _..1) =x =1 +1/a. By corollary 1,y,(G) =v(G)/
a(G) =y -1 +1/a. Thus y .(G) =y -1 + L This com-
[0

pletes the proof of theorem 7.

Let
G = {G X.(G) =x(G) -1 +a(lG)}
= {H | x.(H) =Z((ZD)}

R ={R (R =x(R) -1 +’M}

c(R) -1

By theorem 7, G* C H". Since there are many graphs G

v(G)

«(G)’ but do not

whose circular chromatic numbers equal

equal y(G) -1 + ———, for example, G'..(2<i<d), we

td+i

(G)
have G* CH" . From the proof of theorem 7, if y (G) =y —
1+1/athen »(G) =c(G) =(y-1)a+1. Thus G CR".
And since there are many graphs G whose circular chromatic

BRE B —EE

*EF

numbers equal y —1 + (y —1)/(c —1) but do not equal y — 1
+1/a. Hence we have G" CR ™.
Theorem8 G CH" NR".

References

[1] Vince A. Star chromatic number [J].J Graph Theory, 1988,
12(4):551 —559.

[2] Bondy J A, Hell P. A note on the star chromatic number [J].
J Graph Theory, 1990, 14(4) : 479 —482.

[3] Zhu X. Circular chromatic number—a survey [J]. Discrete
Math, 2001,229(1/2/3):371 —410.

[4] Zhou B. Some theorems concerning the star chromatic num-
ber of a graph [J].J Combin Theory Ser B,1997,70(2):245
—258.

[5] Zhu X. Star chromatic number and products of graphs [J]. J
Graph Theory, 1992,16(6) : 557 —569.

[6] Golumbic M C. Algorithmic graph theory and perfect graphs
[ M]. Academic Press, 1980.

[7] Hossein H, Zhu X. Circular chromatic number of subgraphs
[J]1.J Graph Theory,2003,44(2):95 —105.

[8] Mycielski J. Sur le coloriage des graphes [J]. Collog Math,
1995,3(1): 161 —162.

[9] Chang G J, Huang L, Zhu X. Circular chromatic numbers of
Mycielski’ s graphs [J]. Discrete Math, 1999, 205(1/2/3):
23 -27.

[10] Lam P C B, Lin W S, Gu G H, et al. Circular chromatic num-
ber and a generalization of the construction of mycielski [J].
J Combin Theory Ser B,2003,89(2):195 —205.

E S

AR SARN

(R RFHRF A, AW 211189)

ﬁgmj%dKZAi%%Eﬁﬁﬂhﬂd@E#A@b%ﬁ$ﬁgﬁmlmk—
1. BGHREHy.(G) XL AMIFEA GCL GRA02 NEEM ke d 093t
ﬁwdﬁmeuD%mubwzmﬁﬁgﬂﬂ»mav$$TMuﬂﬂnm%%ﬁ
P M 6 B 2 SR AT e B & Beg — 2 TRt

-j|<k-d,i,j=0,1,-

Ex.(G-v) =x.(G) -1 F= 4

L, e lijlds i

AR T B A HEE TR

FTHRT, LB THOE EHK

BE TRy -1+ aRZFMH, XLy fra 32 E G 85 ELK ik T4

KR (k,d)-F Eor-BA S | Ed; Mycielski B
RES 30157, 5



