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Abstract: A new algorithm for clustering multiple data streams is
proposed. The algorithm can effectively cluster data streams
which show similar behavior with some unknown time delays.
The algorithm uses the autoregressive ( AR) modeling technique
to measure correlations between data streams. It exploits
estimated frequencies spectra to extract the essential features of
streams. Each stream is represented as the sum of spectral
components and the correlation is measured component-wise.
Each spectral component is described by four parameters,
namely, amplitude, phase, damping rate and frequency. The e-lag-
correlation between two spectral components is calculated. The
algorithm uses such information as similarity measures in
clustering data streams. Based on a sliding window model, the
algorithm can continuously report the most recent clustering
results and adjust the number of clusters. Experiments on real and
synthetic streams show that the proposed clustering method has a
higher speed and clustering quality than other similar methods.
Key words: data streams; clustering; AR model; spectral compo-
nent

assive volumes of data streams can be found in nu-

merous applications. Stream data are massive, contin-
uous, temporally ordered, dynamically changing, and poten-
tially infinite'' . For the stream data applications, the vol-
ume of data is usually too huge to be stored or to be scanned
more than once. Furthermore, in data streams, the data points
can only be sequentially accessed. Recently, an abundant
body of researches on data stream clustering has
emerged” "

Some real streams or their subsequences may have lag
correlations; they demonstrate highly similar rise/fall pat-
terns, neglecting some lags or shifts on the time axis. Since
in such stream clustering, traditional similarity measures
such as the Euclidean distance or the correlation coefficient
cannot be helpful in revealing lagged similarities among data
streams, this problem may be challenging. Therefore, a new
technique to cluster such streams is needed to effectively de-
tect such lagged similarities overlooked by traditional meth-
ods.

A clustering algorithm for data streams based on the auto-
regressive modeling technique'*™" is proposed. The algo-
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rithm uses estimated frequencies spectra to extract the essen-
tial features of streams. Each stream is represented as the
sum of spectral components and the correlation is measured
component-wise. We calculate the e-lag-correlation between
two spectral components and use such information as simi-
larity measures in clustering data streams. Experimental re-
sults show that our algorithm has a better clustering quality
than other algorithms.

1 AR Model and Spectral Component-Wise Cor-
relation

For data streams Y =(y,,y,, ..., y,,...) and Y =(y,,,,
Viuns coes Yguns ---)» We call Y the d-lagged stream of Y.
Given two streams X and Y and a threshold ¢ e (0, 1], for
window size L, if |p(X(L), Y"(L)) |=e¢, streams X and ¥
are called g-lag-correlated data streams, p(X(L), Y (L))
is the correlation coefficient between X (L) and Y (L).
Given the time horizon for clustering L, a threshold ¢ € (0,
1] and the number of clusters k, the clustering algorithm par-
titions n data streams into k clusters C(L) = {C, (L),
C,(L),...,C, (L)}, so that data streams in the same cluster
are ¢-lag-correlated and minimize some objective function
measuring the quality of clustering in the period [ - L + 1,
t], here ¢ is the time when the analysis is performed.

To detect such lagged correlations between the data
streams, we use an AR modeling technique to extract rele-
vant features and ignore some irrelevant ones which may
corrupt our similarity search. Let a subsequence of a data
stream be x, = {x,}, t=1,2, ..., n. Its AR(n) is x, = a,
X, +a,x +, ..., +a,x, _, +c,, where c, represents a
noise drawn uniformly from [0, 1] and a,, a,, ..., a,, are
coefficients. By solving the linear equation system represen-
ted by the Yule-Walker form, coefficients a,, a,, ..., a,, can
be obtained. Then the features such as the amplitude, the
phase, the damping factor and the frequency of components
can be estimated as follows: First, sequence x, can be decom-
posed into a set of discrete complex exponentials or sinu-
soids. That is
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where «,, ¢,, o, and w, denote amplitude, phase, damping
factor and frequency of the sinusoidal component k of stream
I, respectively. Since the AR coefficients a,, a,, ..., a,, are
also the coefficients in a polynomial P(z,), these parameters
can be obtained by solving the following equation of z,.

K K
P(z) = H(Zi —Zy) = Zaikzl{(_k a, =1 (2)
k=1 =0
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Therefore, after the roots z, of Eq. (2) being calculated,
the complex amplitudes ¢, can be calculated by Eq. (1),
and, hence, the spectral components (a,, @,, 0, ;) of a
sequence can be obtained. Then the spectral component
based similarity between x, and x, can be computed by

p(x,%) =arg max [RGO. x| (3)
where o, denotes the spectral component amplitude thresh-
old which is used to remove the noisy data. In Eq. (3), R
(x'”, x{") is actually the Pearson correlation coefficient be-

tween the two sequences in terms of their damping rates and
frequencies.

2 Framework of the Algorithm SPE-Cluster

In our algorithm, we explore a sliding window technique
model for clustering data streams. The framework of the pro-
posed SPE-cluster algorithm is as follows:

Algorithm  SPE-cluster
Input: New values at time ¢ for n streams x,, x,, ...
Output: Clustering results for each sliding window.
Begin:
read in the first w data from the streams and create ini-
tial clusters;
t=w;
while not end of streams do
read in x,,(t) for each stream x,,r=1+1;
if £ mod /=0 then
form a new basic window;
if the number of basic windows exceeds m then de-
lete the oldest window;
compute lag correlations for each pair of streams in
(x,[t-w+1,1]);
cluster the streams using k-medoids;
adjust k according to the clusters obtained;
output clustering results;
endif
Endwhile
End.
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3 Experimental Results

To evaluate the performance of our algorithm, experi-
ments are designed to compare the speeds and qualities of
our algorithm with those of the DFT-cluster’™ . We perform
experiments on real datasets of the daily stock prices ob-
tained from http: //finance. yahoo. com. We use a straight-
forward and easy metrics to evaluate the quality of the clus-
tering results: if the structure we obtain is identical to that of
the real one, we set the score to 1, otherwise the score is 0.

Our experiment performs 50 trials on the dataset and the
trials use different lengths of basic widows. Fig. 1 shows the
average quality of the clustering results using different
lengths of basic widows. From Fig. 1, we can see that our
algorithm has a higher clustering quality than the DFT-clus-
ter.

We also test the processing speed of the SPE-cluster and
compare it with the DFT-cluster (400 DFT coefficients).
The experimental results show that the executing time for the

1.0

%‘ 0.9

©0.8

g’ —— DFT-cluster

;% 0.7 & SPE-cluster
0.6 . . . .

2 4 6 8
Number of basic windows

Fig. 1  Average clustering quality under different basic
windows for DFT-cluster and SPE-cluster

SPE-cluster is shorter than that of the DFT-cluster for every
data set. Fig.2 shows that the average processing time per
segment for the SPE-cluster is 0. 928 s whereas it is 1.2 s
for the DFT-cluster using 400 DFT coefficients. The DFT-
cluster needs an even longer processing time when more co-
efficients are used. When using 1 500 DFT coefficients, the
DFT-cluster takes an average of over 7 s. Reducing the num-
ber of DFT coefficients can save time but leads to poorer
quality. The DFT-cluster with 250 DFT coefficients has
much poorer quality than does the SPE-cluster on these data
sets.
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Fig.2 Computation time of SPE-cluster and DFT-cluster

4 Conclusion

In this paper, we concentrate on the problem of clustering
multiple data streams. In these data streams, there may be
some streams that are highly correlated with others but with
time delays. We use an AR modeling technique to decom-
pose these streams into a set of sinusoids of various frequen-
cies and measure correlation similarity using spectral compo-
nent information. We cluster data streams within a sliding
window, and continuously find cluster structures. Experimen-
tal results show that our algorithm can effectively cluster
highly correlated data streams, some of which may have
time delays.
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