Journal of Southeast University (English Edition)

Vol. 24, No. 3, pp. 284 —288

Sept. 2008 ISSN 1003—7985

Research on web service wrapping for command line programs

Ji Guang"? Han Yanbo'

Wang Jing'

Chen Wanghu'*

(' Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China)
(*Graduate School, Chinese Academy of Sciences, Beijing 100039, China)

Abstract: A web service wrapping approach for command line
programs, which are commonly used in scientific computing, is
proposed. First, software architecture for a basic web service
wrapper implementation is given and the functions of the main
components are explained. Then after a comprehensive analysis of
data transmission and a job life cycle model, a novel proactive
file transmission and job management mechanism is devised to
enhance the software architecture, and the command line
programs are wrapped into web services in such a way that they
can efficiently transmit files, supply instant status feedback and
automatically manage the jobs. Experiments show that the
proposed approach achieves higher performance with less memory
usage compared to the related work, and the usability is also
improved. This work has already been put into use in a production
system of scientific computing and the data processing efficiency
of the system is greatly improved.

Key words: service-oriented computing; scientific computing;
web service wrapping; web service wrapper

n recent years, service-oriented computing!” has been
I gaining popularity in scientific computing fields such as
bioinformatics, weather forecasting, and astronomy compu-
ting, etc. In this computing paradigm, computing power dis-
tributed across multiple nodes is presented as services, and
can be composed and interacted with each other. For exam-
ple, the VINCA4Science project™ conducted at the Institute
of Computing Technology of Chinese Academy of Sciences
is such a kind of effort. But in common circumstances, the
computing power is presented in the form of command line
programs, such as BLAST, EMBOSS, and executable
scripts, which are hard to incorporate in the service-oriented
workflow software'”’. Therefore we need to wrap and trans-
form them into web services, and this process is called serv-
ice wrapping'*™®.

In the command line user interface, users operate by issu-
ing commands and running the programs. But after the pro-
grams are transformed into web services, some issues arise:

1) Web services usually transmit data by SOAP messages,
which are unfit to carry large data because the data should
be Base64 encoded or escaped. However, data in scientific
computing are often huge in amount. For example, the chol-
era genes stored in the ACE format are of megabytes, and
the genes of more advanced species can be of gigabytes or
even terabytes. Therefore, service wrapping should be able to

Received 2008-04-15.

Biographies: Ji Guang (1984—), male, graduate; Han Yanbo (correspond-
ing author) , male, doctor, professor, yhan@ ict. ac. cn.

Foundation items: The National Natural Science Foundation of China (No.
60573117), the National Basic Research Program of China (973 Program)
(No. 2007CB310805) .

Citation: Ji Guang, Han Yanbo, Wang Jing, et al. Research on web service
wrapping for command line programs[J]. Journal of Southeast University
(English Edition), 2008, 24(3):284 —288.

take care of large data transmissions.

2) All the message exchange patterns provided by web
services do not support continuous text streams, preventing
users from monitoring the program status instantly. If the
program status is not checked in time, the program may run
several hours or days in vain, thus wasting valuable compu-
ting resources. Therefore, measures to instantly monitor the
running status should be provided.

3) When a program runs, huge temporary data are genera-
ted. In the cholera gene assembling experiment, data are gen-
erated at a rate of 90 Mbit/s. If the program continues run-
ning, a workstation with a 120 GB capacity hard disk will
crash in half an hour due to low disk space. Therefore clean-
ing up the temporary data and managing jobs should be con-
sidered.

At present there are already some web service wrapping
tools'”™, but they have not solved the above problems. The
web services generated by them are often used to construct
web-based user interfaces of the programs, instead of being
integrated in a workflow environment.

This paper proposes a web service wrapper, namely Am-
ber (a command-line-program web service wrapper) . Amber
wraps programs by a novel data transmission and job man-
agement approach, enabling fast data transmission and dura-
ble operation of the system, and has been applied in a pro-
duction system together with the VINCA4Science workflow
software suit.

1 Software Architecture

The software architecture is shown in Fig. 1. The code
generator reads the command line descriptions, generates
corresponding web services and deploys them on the web
service proxy. The program managers in computing nodes
communicate with the web services, and are responsible for
running the command line programs.

The web service proxy enables the access from outer net-
works. It accepts computing requests, and dispatches the re-
quests to the computing node, and returns the results when
the job is finished. Therefore, the computing power of the
computing nodes is exposed as web services to the outer net-
works.

The code generator generates web service interfaces for
command line programs. The user writes command line de-
scriptions for different programs and uses the code generator
to generate different web service codes and deploys them on
the web service proxy.

The program manager supports the communication be-
tween the web service proxy and computing nodes, and runs
the command line programs. It is deployed at individual
nodes, and provides an infrastructure on which the command
line program can run.

Research on web service wrapping for command line programs

285

Program
ma.nagfi“ Bioinform-
ﬁ Command line Computing node atics data
. descriptions §
Client
software C{o—g
N e
Science worker NS generator
|_{| Program
{} manager -
L Web .
serviees T Computing node
s S —
S =
Web service proxy
L\% / High performance cluster
b B L A_| Program
Cg(rent L manager
Soware Computing node
Science worker X
L]
Fig.1 Software architecture
In this software architecture, the selection of client soft-
ware is flexible. It can be a common web service client, or a Node 0
piece of workflow software supporting web services such as po
VINCA4Science. Client | %1
software Web services
. 1
2 Key Techniques %2
The above architecture is a basic framework of web serv- Node 1

ice wrapping for command line programs. But as stated
above, Amber should support fast data transmission between
the web services; it should also transmit the program screen
messages instantly, enabling science workers to monitor the
status; it needs to provide job life cycle management, main-
taining a stable and durable job running environment.

2.1 Proactive data transmitting

We abstract the program as a function:

y=f(x)

where x is the input data, and y is the output data. Given a
computing process composed of programs f, and f,, which
are deployed in node 0 and node 1, respectively. The input
of f, is x,, and the output of f; is the input of f,. So we have

X, =fy (%) X%, =f(x))

where x, is the ultimate result.

Web services bound with HTTP protocol follow the re-
quest-response pattern, in which the input data is transmitted
to the web service provider by request, and the output data is
transmitted to the web service requester by response. This
pattern is illustrated in Fig. 2. The request sent to node 0
contains the input data x,, and the response from node 0
contains x,, which is the computing result of f,. We use
size(x) to denote the size of data x. It follows that the
whole data size transmitted is

size(x,) +2 2 size(x;) +size(x,,,)
i=1
where x|, ..., x, are temporary results. Were the process to
contain many computing programs, there would be signifi-
cant overhead.

Fig.2 Transmitting data by SOAP

If we make the data downloadable, and the request con-
tains the data address rather than the data, the story will be
different. The web service will download the data proactive-
ly, instead of receiving the data reactively. We call this the
proactive transmission approach, which is illustrated in Fig.
3. The bold lines with arrows denote data transmission. In
this approach, if there are n + 1 computing programs f;, f,,
....f,, and each program’s output is the next one’s input, the
total data amount transmitted between client software and
web services is

size(x,) +size(x,,,)

’

X 1
Web services
%]

Client
software

’
X927

Fig.3 Transmitting data by proactive approach

In other words, it is the summed size of initial data and
ultimate result data, and is irrelevant to temporary results.
This significantly improves data transmission efficiency.

In order to implement proactive data transmission, the
web service should make the output data downloadable. On
the client side, if a job needs input files, the client software
should supply the file addresses. When the program manager
receives the addresses, it will download the files to the job’s

286

Ji Guang, Han Yanbo, Wang Jing, and Chen Wanghu

working directory. When the program terminates, the pro-
gram manager generates the result files’ download addres-
ses, and sends them back to the client software by web serv-
ices. When the client software receives the addresses, it can
download the files or pass them on to the next job as input,
thus avoiding transmitting the whole data to the client soft-
ware.

2.2 Instant message transmission in the web framework

Instant message transmission means that as soon as the
computing program generates the message, the message
should be transmitted to the client software. But the request-
response pattern of the web service makes it difficult: the
message can only be transmitted after the client has reques-
ted it. Therefore, implementation by web services is not fea-
sible.

But we can still implement that function in the web
framework. We make the web service proxy provide an HT-
TP service, which communicates with computing nodes by
internal protocol and receives the screen output messages in-
stantly. When a client issues request for a particular job, the
HTTP service connects to it; as soon as text messages ar-
rive, the HTTP service transmits them to the client. Fig. 4 il-
lustrates this approach.

Client software Web services

Sereent
[HTTP client ’<}_‘ Servlet @ fream.
S | 0 N

Fig.4 Instant message delivery under the web framework

Program

manager

)
il

E:
i

To implement this approach, there is a Servlet (which is a
lightweight Java-implemented HTTP server) running on the
web proxy. There is no data buffered in the Servlet. As soon
as a new message arrives, it is forwarded to the client by the
Servlet. When the client software gets the job ID
(e. g.,jobl)by calling init, it can send the HTTP request to
the Servlet (e. g., request for /jobl). When the Servlet re-
sponds, it directs the screen output messages to the client
software. Whenever there is text on the screen output
stream, it will be sent to the client software. Therefore, the
transmission is instant. This approach makes up for the dis-
advantage of web services and provides a solution under the
web framework.

2.3 Job life cycle management

The job mentioned above is a scientific computing process
performed on a computing node submitted by a science
worker. In order to implement automatic cleanup of jobs, we
analyze the life cycles of the jobs.

The events which appear in a job are shown in Tab. 1.
There are dependency relationships between these events,
and, therefore, we use a state machine to illustrate them in
Fig. 5. The states are listed in Tab. 2.

The job will not be cleaned up until it reaches the Termi-
nate state. If we permitted jobs not to reach the Terminate
state, the files produced by the jobs would pile up in the
computing nodes, which would fail in a short time due to
low disk space. We cannot ensure that the science workers
end their actions on the jobs with cleanup or abort. There-

fore, we introduce the disposable state and timeout/hold ac-
tion.

Tab.1 Actions on a job’s life

Name Contents
Init Setup working directory
Input Download needed files
Start Start computing program
Suspend Suspend the program
Abort Abort and clean the job

Exit The program exits

Cleanup Clean the working directory
Timeout Timer times out
Hold Reset the timer
Dispose Forced cleanup
Tab.2 Job states
State Description

Initial state The job does not exist

Allocated Working directory allocated
Live Ready Input files downloaded
Running Program running
Terminated Program terminated
Disposable Job may be disposed at any time

Final state Job disposed

Fig.5 A job’s life cycle

If the job stays in the Terminate state for a given period,
the timer triggers the Timeout action, and the job will be
transferred to the disposable state. When the disk space is
low, the dispose action will dispose of the job and make it
reach the Terminate state. In this model, the job will eventu-
ally reach the Terminate state as long as there is a finite
number of actions.

The client software calls a hold operation for every given
period while downloading files in the Terminated state, thus
avoiding the job to transfer to a disposable state. After the
files have been downloaded, the client software calls a clean-
up operation to clean the job up. Even if the cleanup opera-
tion is not called, the program manager will take action and
make the job disposable and dispose of it eventually.

Research on web service wrapping for command line programs

287

3 Use Cases

Amber has been deployed and used in a bioinformatics re-
search institute. Fig. 6 shows the process diagram generated
by Vinca4Science with the help of Amber. The rectangles in
the figure are programs wrapped by Amber. These programs
are distributed in four computing nodes: the node where the
upper-left retrieve reference sequence program resides has a
large gene sequence database, providing gene reference se-
quences; the node where the upper-right Retrieve Solexa
reads program resides is connected to gene sequencing ma-
chines, providing the original data transferred from Solexa
sequencing machines. These two programs provide data for
the whole process. The lower-right Consed ace program re-
sides on a machine with large memories, and visualizes the
gene assembly results in ACE format for the science worker
to facilitate manual adjustment. The other programs run on a
high-performance cluster.

| Retrieve reference sequence I ’ Retrieve Solexa reads |

| Retrieve repeat reads |

Merge reads

| Retrieve unique reads ‘

‘ Assemble repeat reads | | Assemble unique reads |

Blat repeat sequence

| Blast unique sequence | |

Consed ace

‘ Merge alignment | ‘

Fig.6 Process diagram constructed by VINCA4Science

The black lines in the diagram denote the data file transmis-
sion path. Double click the format database and you will see
the view shown in Fig. 7. The true value in the connection
option on the left column shows that the input data are from
the previous program’s output data. The three rows in the
right column show that the computing process generates
three output files, available for subsequent programs.

B eh (I AnERE [(CROSEUE | S0mE |
BASHNE

nihsKEe
et |[&%
Lrefe
X refe
&refe

[mm [eamE [Fext

true e

true &

. e [Lww

Fig.7 Process configuration

The process utilizes different programs from multiple
nodes, and passes data among them. The data are transmitted
automatically without human interference, and efficiency is
improved.

4 Related Work and Comparisons

Soaplab!”' is a web service wrapper developed by Europe-
an Bioinformatics Institute. Its users first describe the com-
mand line programs by the ACD language, and feed the de-
scriptions to Soaplab to generate web services for the execut-
able files. The host providing web services communicates
with computing nodes in order to submit jobs and to query
job status. Opal'® is developed by San Diego Supercomput-
er Center. Its significant difference from Soaplab is that it
does not generate web service codes from description files,
but uses information from configuration files directly. In the
meanwhile, it can conveniently integrate grid resources.

The generic factory service'”, developed at Indiana Uni-
versity, is based on Globus Toolkit. It requires that all data
files be downloadable by Globus Toolkit and be marked with
URLSs. The web service is responsible for transmitting URLs
instead of data files, thus improving efficiency. But its func-
tioning depends on Globus, which is inflexible. Tab. 3 is a
qualitative comparison among the related work and Amber.

Tab.3 Comparison on related work

Feature Soaplab Opal GFS Amber

Data transmission efficiency Low(by SOAP) Low(by SOAP) High(by Globus) High
Instant message delivery No No Weak Yes
Job life cycle management No No No Yes

Soaplab and Opal transmit data by SOAP messages, and
perform in a similar way. As mentioned above, this approach
is low in efficiency and consumes many system resources.
The latter’s user manual explicitly requires the user to set the
maximum heap size of the JVM to 1 GB. Experiments show
that if the file size exceeds the maximum heap size, the JVM
will crash. The GFS uses a Stageln function of GRAM to
transmit files, and performs similarity to Amber. We perform
a set of experiments to show the performance difference be-
tween these two approaches. The experiments transmit a set
of binary files of 10 to 60 MB size, and measure the file
transmission time and JVM heap size in use. The web server
in the experiment has a Pentium M 740 CPU, 2 GB memo-
ry, and has Sun JVM version 6.0 and Tomcat 6.0 + Axis
1. 4 installed. The client software is deployed on the same
LAN, which connects the host via a 100 MB Ethernet

switch. The results are shown in Fig. 8 and Fig.9.

The experiments show that the proactive transmission ap-
proach has a significant advantage. The data transmission
time is shorter because it avoids encoding the data by
Base64 encoding. The heap in use is much smaller because it

25
20
& 15+ —&— SOAP transmission
£ —l— Proactive transmission
2 10F
5k
0)
10 20 30 40 50 60
Data size/MB

Fig.8 Comparisons on data transmission time

288

Ji Guang, Han Yanbo, Wang Jing, and Chen Wanghu

1000
800
=)
=
}éo 600 -
=]
% 400 |
= —&— SOAP transmission
200 —— Proactive transmission
oL g—u——u un—8—n

10 20 30 40 50 60
Data size/MB
Fig.9 Server side JVM heap size in use

writes the data directly to the disk instead of storing it in
memory. The GFS relies on GRAM. Although it performs sim-
ilarity to Amber, it requires that all files be local or accessible
by GridFTP. However, Amber supports FTP, SFTP, HTTP and
other common file transferring protocols, and it is more flexi-
ble.

It should be made clear that if the client is behind the fire-
wall, there will be extra work to send out data. In this situa-
tion, the client software should forward the data to the outer
network where it can be downloaded, and include the URL
in the SOAP message. Besides, a proactive transmission ap-
proach requires that the client and computing node provide
file downloading service. This may cause some management
overhead, but it is worth that due to significant performance
improvement.

Neither Soaplab nor Opal can provide instant message de-
livery. The GFS can query job status by a self-defined WS-
messenger, but it cannot provide a continuous message text
stream. The instant message delivery of Amber solves the
problem, and all the related work does not provide automat-
ic job life cycle management. Users should clean up expired
jobs manually. Soaplab and Opal provide cleanup scripts
(both available in http://soaplab. sourceforge. net/soaplabl/
ToDo. html and http: //nbcr. net/services/opal/), which need
to be executed by the administrator. The web services gener-
ated by Amber can perform cleanup automatically.

5 Conclusion and Future Work

This paper introduces a web service wrapper for command

«Fﬁi/\

-

7
—731’3 5161,2

line computing programs in a multiple node environment. It
facilitates fast data transmission among computing nodes by
an improvement on the file transmission approach, and ena-
bles the system to continue running without outer interfer-
ence by job life cycle management.

We are now continuing to improve Amber, especially re-
garding security features. At present the web service proxy
uses HTTPS to provide a simple authentication mechanism,
and we are going to enhance it. We are collaborating with
bioinformatics institutes closely, making the software adapt
to different computing environments and become a useful
software tool in science computing environments.

References

[1] Singh M P, Huhns M N. Service-oriented computing: seman-
tics, processes, agents [M]. New Jersey: Wiley, 2005.

[2] Wang J, Han Y, Yan S, et al. VINCA4Science: a personal
workflow system for e-science [C]//Proceedings of Interna-
tional Conference on Internet Computing for Science and En-
gineering. IEEE Computer Society Press, 2008: 444 —451.

[3] Tiwari A, Sekhar A K T. Workflow based framework for life

science informatics [J]. Computational Biology and Chemis-

try, 2007, 31(5/6) : 305 —319.

Canfora G, Fasolino A R, Frattolillo G, et al. A wrapping ap-

proach for migrating legacy system interactive functionalities

to service oriented architectures [J]. Journal of Systems and

Software, 2008, 81(4) : 463 —480.

[5] Gannon D, Alameda J, Chipara O, et al. Building grid portal
applications from a web service component architecture [J].
Proceedings of the IEEE,2005,93(3):551 —563.

[6] Li M, Qi M. Leveraging legacy codes to distributed problem-
solving environments: a web services approach [J]. Soft-
ware—Practice and Experience,2004,34(13): 1297 —1309.

[7] Senger M, Rice P, Oinn T. Soaplab—a unified Sesame door
to analysis tools [C]//Proceedings of UK e-Science All
Hands Meeting. Nottingham: EPSRC, 2003: 509 —514.

[8] Sriram K, Brent S, Karan B, et al. Opal: simple web services
wrappers for scientific applications [C]//Proceedings of
IEEE International Conference on Web Services. IEEE Com-
puter Society Press, 2006: 823 —832.

[9] Kandaswamy G, Fang L, Huang Y, et al. Building web serv-
ices for scientific grid applications [J]. IBM Journal of Re-
search and Development,2006,50(2/3) :249 —260.

[4

—_—

FH) web BR&E L a B 3R

ﬁ% AR /B‘il X %1

F’Z}__‘Hi)}ﬁbl,z

(" P EAF R AP LHT, LT 100190)
(P EAFRAT AR, LT 100039)

?I'%i%‘& R T — A A

EIR B AR R, E AT R 09 Ty ARt
*ﬁ%ﬁ@ﬁ £ 3(4%4%#6?%4’?&1:
T AR &R, 1B AT

ALERIIES T R A RAELE R
SR @ IR0 3 A
hE 422 . TP311

A Bpat R AR g B 3
R TAFEATHRAE, T ikt%@s&mﬂ?ﬁ;}%éﬁ B RS

L ATIR P F A ATAE S web IRE- G B k. B AL T FI— A A6 web R4
77 R i 2 AT B Ao b A G B B IR, X T
B ELHUE) ARG IR IR RA AT A A A AT AR AR 6L R web IR 449) B, 4R E
2P R R, kAN T R AT #ET

AT ZEEGRURFIT AL AR TIFRT

sweb JR 41 ;web JR &6 ¥ B

