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Typed formal model for WS-CDL specification
of web services composition

Gu Xiwu Li Ruixuan Lu Zhengding
(College of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract: In order to formally reason and verify web services composition described by web services choreography specification WS-
CDL, a typed formal model named typed abstract WS-CDL ( web services choreography description language) for WS-CDL
specifications is proposed. In typed abstract WS-CDL, the syntax of type and session, typing rules and operational semantics are
formalized; the collaborations of web services are formally described by sessions; the operational semantics of a session can help to
formally reason the execution of the choreography; the typing rules can help to formally check the data type consistency of exchanged
information between web services and capture run-time errors due to type mismatches. Particularly, the concepts of type assumption set
extension and type assumption set compatibility are proposed, and the merging algorithm of type assumption sets is defined so as to
eliminate type assumption conflict. Based on the formal model, typed mapping rules for mapping web services choreography to
orchestration is also defined. With the typed mapping rules, orchestration stubs and their type assumption sets can be generated from a
given choreography; thus, web services composition can be verified at choreography and orchestration levels, respectively. The model
is proved to have properties of type safety, and how the model can help to reason and verify web services composition is illustrated
through a case study.
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owadays, standards for web services composition cover two different points of view: choreography and orchestration'" .

Choreography describes the interactions between web services from a global perspective while orchestration describes
the interactions in which a given service can engage with other services. The web services choreography description language
(WS-CDL) ™ is the latest and most important choreography specification. However, WS-CDL is an XML-based descriptive
language, lacking formal models to express the semantics of WS-CDL accurately and formal verification mechanisms to en-
sure the correctness of a composite web service such as behavior compatibility and data type consistency.

In this paper, we propose a typed formal model named typed abstract WS-CDL for WS-CDL specifications. The model can
be used to reason on the execution of web service choreography and check the type consistency of exchanged information.
The typed abstract WS-CDL can be proved to have properties of type safety. Moreover, we define a set of typed mapping
rules for generation orchestration stubs described by a typed pi-calculus process from a given web service choreography.

1 Related Work

There are some existing works on formally modeling and verifying web services composition. Salaun et al. * formally de-
scribed and reasoned web services composition from choreography and orchestration views based on process algebra CCS;
Brogi et al. " proposed a CCS-based formal model for web service choreography interfaces (i.e., WSCI); Busi et al. ' pro-
posed a formal framework of WS-CDL; Yeung et al. ' formally verified web services composition described by WS-CDL
based on process algebra CSP; Zhao et al. "' proposed a formal model CDL for WS-CDL specifications.

In addition to the works listed above, some proposed formal models based on type theory can be used to formally check
data type consistency of exchanged information between web services. Gay and Hole"™ proposed a typed formal model based
on session types which can be used to verify the dynamic behavior and type consistency of web services; Pahl" proposed a
pi-calculus-based formal framework for the composition of components in which the interactions between components can be
described by port type and contract.

2 Typed Abstract WS-CDL
2.1 Notation definitions for background concepts

Definition 1 (session) A session, denoted by S, represents an activity that may be performed by one or more of the par-
ticipants of composite web services.

Definition 2 (role) A role, denoted by r, represents a participant of a session. The set of roles that represents the partici-
pants of a session S is denoted as S[ R]. The set of variables and operations of role r are denoted as r[ V] and r[ O], respec-
tively. Moreover, we denote a variable x of role r as r[x] and an operation o of role r as r. o.
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Definition 3 (channel) A channel is a point where an interaction between participants occurs. A channel ch is located at
the role of information receiver, which is denoted as ch@ r. 0. The set of channels through which a session is performed is
denoted as S[ C].

Definition 4 (proposition) A proposition, denoted by p, represents the guard or repeat condition of a workunit activity in
WS-CDL. We denote the set of roles involved in a proposition p by p[ R], since the evaluation of p may be associated with
variables of more than one role due to the “global” characteristics of WS-CDL specifications.

2.2 Syntax
2.2.1 Syntax of type
Types S,T::=B| VS, VT
B:: =bool |int| real |... (basic data type)
VS, VT:: =R(B) | W(B) | RW(B) (variable type)
C::=1roB) | | roB)| }{ro(B) (channel type)
Variables Vi =r[x]
Channel CH:: =ch
Type assumption set  [:: =@, | I, f[x]: VT | I', ch: C
Subtype relation <p:i=0_| <, S<T

The letters S, T range over basic data types and variable types. Basic data types ranged over by B stand for arbitrary basic
data types. The variable types ranged over by VS, VT include three types of variables denoted by type construct R, W and
RW: R(B) is the type of variables that can be read and the value read from is assumed to have type B; W( B) represents the
type of variables that can be written, and the values written to have type B; RW(B) represents the type of variables that can
be read and written, the value read and written has the same type B.

The channel types ranged over by C include three types of channels: 1 r. o(B) stands for a request channel type; the tar-
get of information exchange is operation o of role r, and the type of information passed through is a type or subtype of B;
similarly, | r. o(B) stands for a response channel type; } r. o(B) stands for a request-response channel type. The arbitrary
variable of role r ranged over by r[x] and channel is ranged over by ch.

The type assumption set I'={a;: T, | i # j=a,#* a;}, where a;: T, is a type assumption that name a, has type T,. Let

i

Dom(I") ={a | a:TeTI}, then we have YaeDom(I'), I'(a) =T. An empty type assumption set is denoted as @,.. The
subtype relation on type set T is denoted by <, <, ={T,<T, T, T,eTand i#j=T,# T,} where T,<T, denotes that T,
is a subtype of 7,. An empty subtype relation is denoted as @ _. Name a can be proved to have type T under I" and <, is

denoted as I', <, ta:T. Contrarily, I', <, +a: T asserts that the type of name a does not have type 7 under I" and <,.
Type S can be proved to be a subtype of type T under the subtype relation, <, is denoted as <, —S<T. The session S is
called a well typed session, denoted by I, <, =S, if it can be proved that session S does not have any error of type mis-

match under /" and < ,. Contrarily, I', <, S denotes that S is not a well typed session.
2.2.2 Syntax of session

Si: =S8, S 8,1 8 1S,18,.8, [ [PI[P,] %S| Err
Salom: P = Sno ‘ Ssilem ‘Sassign ‘ Srsq ‘Sresp ‘ Sreq-resp ‘ NULL
S0t =H0) St =H(T) Syt - = assign(r[x]«r[e])
Seeqt s =1eq(ry, 1y, ¢h@r, 0, 1, [x] —>r,[¥]) S, 0 =resp(r,, 1y, ch@r o, r [x]«r,[y])

req

S : =req-resp(r,, 1, ,ch@r, o, r [ x] —r,[y], r,[s]«r,[])

req-resp * *©

In the definitions above, a sessions S can be a non-deterministic choice between sessions S, and S,(S, +S,), a parallel exe-
cution of sessions S, and S,(S, ||S,), a sequential execution of sessions S, and S,(S,. S,), a conditional iterative execution of
an enclosed session ([ P,][P,,] * S), a session in which a run-time error has occurred (Err)and an atomic session (S,,,) -

The atomic session S, denotes that role r does not perform any action; S, denotes that role r performs an internal silent
action 7; S, denotes that a value assignment from variable e to variable x on role r; S, represents a request interaction from
role r, to role r, through channel ch@ r, o, in which the request message is sent from r,[x] to r,[y]. Similarly, S, repre-

sents a response interaction from role r, to role r,; S represents a request-response interaction between role r, and role r,.

req-resp

2.3 Typing rules

1) Variable and channel typing rules

~ I'(s7[x]) =VT ~ I'(ch)=C I s, FViIVSA <, EVS<VT
TVAR: I, <,Fr[x]: VT’ TCH: I <,bch:C’ TSUB: I, <,=V:VT
2) Subtyping rules
T, <T,\N<,-T,<T
. . T 1 2 T 2 3
TSELF: < FT<T’ TTRANS: <. T <T,
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<,F B, <B, <,+B,<B <,+B,<B,

. . 2
TRSR: <, R(B))<R(B,)’ TRWRW: <, FRW(B,) <RW(B,)
TRWSR: TRWSW: Twsw: —~r - Bis5
" <,FRW(B)<R(B)’ " <, FRW(B)sW(B)’ ‘<, W(B, <W(B))
3) Session typing rules
TNULL: —————, TNO: ——— TTAU: ————
NU I', <, —NULL’ NO I ,<,Fr0)° U I' <, Fr(7)
TREQ: I'=ch: 1r.o(B)AT, <, =r[x]:R(B)NT" ,<,bFnr[y]: W(B,) N\<,~B, <B<B,
' -r' > sT }_Sreq
TRESP: I'—ch: |r.oB)ANT, <, Fr[x]:W(B)AT, <,Fr[yl:R(B) A<, B,<B<B,

I <,-S

resp

I'tch: tr,oB)NT, <, =r[x]:R(B)NT, <, =nl[y]:W(B,) N\ <, =B <B<B,\I, <,
Frlsl:WB)ANTI, <, +r[f]:R(B,) N\<,+~B,<B<B,

TRR:
F’ $ T }_ Sreq-resp
<, Frx]:W(B,) NI', <, Frle]:R(B,)) N<,+B,<B, ris,+—S
TASSIGN: TITR:
SS GN F’gTFSmsign ’ F’gTF[Prepeat] *S
TWORKUNIT: I<,"35 TSEQ: L<,PSAL<FS
- F’$T}_[Pg][Prepem] *S, . F’$T'_S1‘S2

I <,=SAI'<,-§5,
I, <,=8 +8,

I <,=8AI'<,-85,

TCHOICE:
r,<,=ss,

,  TPAR:

In the typing rules, above the line are premises and below the line are conclusions. “Err” is not well-typed in any case.
Rules TVAR, TCH, TSUB, TSELF, TTRANS, TRWSR, TRWSW, TRSR, TWSW, TRWRW are standard rules in type theo-
ry.

Rules TNULL, TNO and TTAU show that atomic sessions NULL, S, and S,
TREQ shows that an atomic session req (r,, r,, ch@r,. o, r,[x] —r,[y])is a well typed session if the type of information
passed through ch is B; the target of information is operation o of role r,; the type of variable r,[x] on sender is R(B,); the
type of variable r,[y] on receive r is W(B,), and B, <B<B,. The case for atomic sessions S, ., S, resps Sassign AT€ Similar to
Sreqs which are denoted by rule TRESP, TRR, TASSIGN, respectively. The rules TWORKUNIT and TITR show that if the
enclosed session § is well-typed, then [P, ][ P, ] * S and [P, ] * § are well-typed. The rules TSEQ, TCHOICE and TPAR
show that the sequence, choice and parallel executions of two sessions are well-typed if each is well typed.

are well-typed sessions in any case; rule

rep

2.4 Operational semantics
The operational semantic of typed abstract WS-CDL is given through a labelled transition system which describes the dy-

P
namic evolution of a session. The transitions are of kind S ——S" for atomic actions ranged over by «, meaning that if propo-
sition p holds, then session S has an atomic action « leading to session S’. The atomic action « is defined as

S

req

S

resp

S

req-resp

a: =8 S S NULL

no silent assign

Rule NATOM states that the execution of an atomic session results in a NULL session; NSEQI states that a sequentially
composite session «. S evolves into S after a one-step execution of «; rules NSTRU, NSEQ2, NPARA, NCHO are standard
rules in process algebra theory; rule NSKIP states that if P, evaluates to false, the execution of session [Pg] [Prep] % § results
in a NULL session; rule NRP states that if P, and P, evaluate to true and the enclosed session S has an atomic action « lead-
ing to session S’, then session [P][P,,] * S can evolve into § " [P,,] * S after a one-step execution of o, and, once ses-

sion S’ has been completed, the session [P ] * S evolves according to rules NRPF and NRPT.
1) Normal rules

P a P
NsTRU: S=35 = TT=T0 © gatom: o, NSEQl: — o, NSEQx: > 5
i a —NULL @ S ——8 S.T—>S". T
SLS, S[ P S]r
NPARA: —>— 2 NCHO: ——— "~ NRPF:

P = Prp NULL

Pa
S| T—s" T S, +8, —S/ [p.,] *S —— NULL
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Prop @ PNP
NRPT: 5 poa S , NSKIP: ~ p NULL > NRP: > 17V/\Pw.v§
[Pl ¥ S——8"[p,] *S [P][Pw] *§ —— NULL [P Pl S ——8" [P,] =S

2)Rules for errors

r ’ $ :Sre F un > g ;Sreﬂ F un g :Sre -res]
ERR-REQ: % ., ERR-RESP: - true, IZI-ULL *, ERR-RR: : Tlrue. NULLq -
Sreq — Emr Sresp — Emr Sreq-resp — Emr

JE— JE— true, NULL

FRun 4 = T Sassian FRun 4 = T = S /\ P = true Sl Err
ERR-AS : T meNULL ERR-WU: !rui,NULL » ERR-SE: true, NULL
' Err [PI[Pp] *S — Err S,.S, — Err
e true, NULL true, NULL true, NULL true, NULL
S, — ErrVS, — Err S, — ErrVS, — Err
ERR-SUM: true, NULL ’ ERR-PA: true, NULL
S, +S, — Err S, |IS, — Err

The rules for errors are used to capture run-time errors due to type mismatches. Rules ERR-REQ, ERR-RESP, ERR-AS,
and ERR-RR state that if an atomic session is not well-typed, then run-time errors of type mismatches will be captured and
the session will be led to session Err immediately; rule ERR-WU states that if an enclosed session § is not well-typed and P,
= true, then session [P, ][ P, ] * S will be led to session Err immediately; rule ERR-SE states that if session S, is led to ses-
sion Err due to run-time errors of type mismatches, then session S,. S, will lead to session Err immediately; rules ERR-SUM
and ERR-PA are similar to rule ERR-SE.

2.5 Properties of the Typed Abstract WS-CDL

The properties of the typed abstract WS-CDL are presented by the following lemmas and theorems.

Lemma 1 (V-weakening) If I, <, Fr[x]: VT,v,wegDom([I"), then I",v: VS, w: C, <, —r[x]: VT.

Proof The lemma can be proved by induction based on the depth of the derivation of I', <, r[x]: VT. We consider
in turn each rule as the last rule applied in the derivation:

1) If the last rule applied is TVAR, then the type assumption of r[x] has been added in I” since rule VAR has the premise
I'(r[x]) = VT. Because v, w¢ Dom(["), so the premise of rule VAR still holds and we have I", v: VS, w: C, <, r[x]:
VT. Note that the case of 1) is a one step derivation.

2)If the derivation is an n-step derivation in which the last rule applied is TSUB, and we assume all sub derivation holds
the hypothesis, so the hypothesis is true for the left premise of rule TSUB. Therefore, we have I', v: VS, w: C, <, = r[x]:
VT.

Lemma 2 ( C-weakening) If I', <, c¢:C,,and v, wg Dom([I),then I',v: VT, w: C,, <, c: C,.

Theorem 1 (S-weakening) If I, <, S,and v, we¢ Dom([I"), then I",v: VT, w: C, <, - S.

Lemma 3 ( V-narrowing) If I, a: VS, <, Fr[x]: VT and VS'<VS, then I',a: VS’, <, —r[x]: VT.

Lemma 4 ( C-narrowing) If I',a: VS, <, Fc¢:Cand VS'<VS, then I',a: VS', <, Fc: C.

Theorem 2 (S-narrowing) If I',a: VS, <, S and VS'<VS, then I, a: VS, <, - S.

The proof of the above lemmas and theorems is similar to the proof of lemmal, which can be accomplished by induction
based on the depth of derivation of premise.

P a
Theorem 3 (type safety) If I', <, S, then for all session S’ which satisfies S ——S’, we have I', <, §".
Proof The theorem can be proved by induction based on the depth of derivation of I', <, = S. We consider in turn each

rule as the last rule applied in the derivation:
1) If the last rule applied is TNULL, TNO, TTAU, TREQ, TRESP, TRR or TASSIGN, then § is an atomic session a. Ac-

true, o

cording to the rule NATOM, we have « —— NULL, and I, <, — NULL.

2) The cases of 1) are one-step derivations. If the derivation is an n step derivation in which the last rule applied is
TWORKUNIT, then the session is of the form [P,][P,,] * S and we assume all sub derivation holds for the hypothesis.
[PI[P

rep
] * S has two possible derivations:
- p,. NULL
e According to rule NSKIP, we have [P,][p,,] *S —— NULL, and I', =<, = NULL.
PP PPy
e According to rule NRP, if § ——S’, then [P,][p,,] *S —S". [P
and §" are well-typed, thus we have I', <, = S§".[P,] = S.

3) Similarly, if the last rule applied is TITR, the hypothesis is also true.
4)If the derivation is an n step derivation in which the last rule applied is TSEQ, then the session is of the form §,. S, and

] * 8. According to the induction hypothesis, §

we assume all sub-derivation holds for the hypothesis. According to induction hypothesis, we have §, LS [ and S/, S, are

all well-typed. According to reduction rule NSEQ2 and typing rule TSEQ, we have S,. S, i>S;. S,, and S/. S, is well
typed. Similarly, if the last rule applied is TCHOICE or TPAR, the hypothesis is also true.



304 Gu Xiwu, Li Ruixuan, and Lu Zhengding

2.6 Operation on type assumption sets

The type assumption of a session S is denoted by I, which can be constructed in a way described by the following
pseudo-code:

I'y=®,; For each re S[R] For each r[x] er[V] I'y =T, r[x]: VT ; For each che S[C] 'y =1, ch:C,

In the case of sequential, parallel and alternative compositions of sessions S, S,, I'g, and I, should be merged into a lar-
ger type assumption set. The merging of 'y, and I',, however, is likely to induce a type conflict; i.e., variable x may have
different type assumptions in Iy, and I'g,. Hence type conflicts should be eliminated when merging two type assumption
sets. To express how to eliminate type conflicts, the following definitions and theorems are presented.

Definition 5 (type assumption set extension) The extension of a type assumption set I’ is denoted as I's. I’ is a type
assumption set satisfying:

1)Dom(I’5) e Dom([I7%);

2) Y xe Dom(I'y) NDom( %), <,.F I'i(x) < (x).

Theorem 4 (type safety holding) If I'y, <, =S, then I';, <, I S.

Proof Let F‘; =I",A and I, A satisfy

1) Dom([I") =Dom([’);

2) YxeDom(A),x¢Dom([Y);

3) YxeDom(I), I'(x) =T(x).

Because I'y, <, S and YxeDom(A), x ¢ Dom([5), we have I';, A, <, = S by theorem 1. Moreover, for any x in
Dom (I'y), Iy = {x: I'y(x) }, x: I'((x),A, <, S. Considering the second condition in the definition of I"y, I'(x) = I"5(x)
<[ 4(x); thus we have Iy — {x: I'y(x) },x: I'(x), A, <, = § according to theorem 2. After the same substitution has been
made for every name in Dom ([Iy), we have [, A, <, = §, that is, FE, <,FS.

Definition 6 (compatibility of type assumption set) Two type assumption sets I”,, I", are compatible, denoted by I", <
D> Iy, if they satisfy either of

1) Dom(I",) NDom([,) =;

2)Dom([I",) NDom([I",) #(), and for ¥ x e Dom(I",) NDom([',), x satisfies one of DO<,+T.(x) sl,(n)Vs=s,+
Iy(x)<Tp(x); @ I'y(x) =R(B) NIMy(x) =W(B); 3 I'y(x) =R(B) NI",(x) = W(B).

Definition 7 (merging of type assumption set) If two type assumption sets I",, I, satisfy I', <|[>I",, then the merging
of I'p, I'y is denoted by I',®1I',; I',DI, is constructed in a way described by the following pseudocode:

I'.er,=o,

For each x ¢ Dom(I",) NDom([",)

if(xeDom(I'p)) I, DI, =1,DI,, x:I',(x);if (xeDom(L)) I, DI, =1,BI,,x:I'y(x);

For each x e Dom(/",) NDom([",)

(<, L ()T ()[BTl =T,®,, x: (x);if (S, -Ty(0)<T(x)I,@T, =T, DI, x:T'y(x);
if ((I'p(x) =R(B) ANI'y(x) =W(B)) V(I ,(x) =R(B) ANI')(x) =W(B))); I',&I,=I,®I,, x:RW(B)

Finally, according to definition 5, I",&b 1, is an extension of I',, I';, and a well-typed session in [", or I', is still well-
typed in I, DT ,.

3 Typed Rules for Mapping Choreography to Orchestration

In order to formally describe the mapping from choreography to orchestration, global interaction of web services is mod-
eled as a session defined in typed abstract WS-CDL and local behavior of each involved role is modeled as a typed pi-calcu-
lus process''” , which is an extension of simple-typed pi-calculus proposed by Sangiorgi and Walker''". In addition to map-
ping global sessions to a local typed pi-calculus process, the type assumption set of global sessions is also needed to be
mapped to the type assumption set of the local-typed pi-calculus process.

Before the mapping rules are defined, we make the following stipulations for convenience of description:

1) |S), denotes the local-typed pi-calculus process of role r mapped from S.

2) The mapping from proposition p to role r is denoted by p,. For VY rep[R], p, is denoted as x, =y, . Moreover, p, =
true if r¢ p[R].

3) The type assumption set I”,,, is constructed by merging type assumption sets of all sub sessions in choreography cho. I,
denotes the type assumption set of the local-typed pi-calculus process of role r, I', = @, before mapping is started.

4)In order to simulate sequential execution of a pi-calculus process, we stipulate that if P is neither an input prefix nor an
output prefix, then P. Q = (vc) (vs) ((P(s) \ c(s). Q). The behavior of P(s) is sending name s along internal channel c af-
ter all actions of P have been performed.

The mapping is started from top level root session and proceeds recursively according to the following rules:

1) |S.), =chx, ", =I",@®{ch: out(B), x: B} if (r=r, A, <, r,[x]:R(B))
1SV, =ch(y:B), I, =T @®{ch:in(B)} if (r=r, A, <,Frlyl: W(B)) |S

req

Y, =skip, I', = I", (otherwise)

req req
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2) \Smp>,:ch(x:B),F,=F,4€B{ch:in(B)}if(r:rl/\l“cho,STI—V,[x]:W(B))
|S..,), =chy, I, =", @ {ch: out(B), y: B} if r=ry, Ay, <, —r,[y1:R(B)) | S,..,), =skip, I', = I', (otherwise)
3) | Sy, =chlx. ch2(s: B,), I', = I',@®{chl: out(B,), ch2: in(B,), x: B, }
if(r=r, /\rcho, <,bFrl[x]:R(B)AT,,, <,=rl[sl:W(B,))
| Sire), =Chl(y: B,). ch2t, I', = I',® {chl:in(B,), ch2: out(B,), t: B, }
1f(r_r2/\]"cho,\,}—r2[y] W(B,) NI, <, rl[tl:R(B,)) \Sleqmp> =skip, I, =I", (otherwise)
4) |s S ssien ) = | assign(r'[x]«r'[e])), =7 if (r=r") | S, ), =skip (otherwise), I, =T,
5) |S,.),=skip forall r,I", =T,
6) | Sy, = [7(1)), =7if (r=r") | S, =skip (otherwise) I', =T,
T) ‘Sl HS2>,<= ‘Sl>r‘ ‘Sz>r’rr:rr
8) ‘SI'S2>r: ‘Sl>r' ‘S2>r’FV:Fr
9) |8, +8,),=18),+ \S>,,F,A=F,
10) \[P][P,ep] #8), = (X =V (1 S) 1 [ X = Vo] [ [P ] % 8))) if (rep [RI Arep[R])
P 1#S), =[x, =v, 1(|[P,]*5)) 1f<rep [R] Arep,lR])
Pol#8), = |8), [ Xy = Vo] | [Pl #8),if (if rep [R] Arep,,[R])
P[P, =S), =[S, [[PI[P,]*S), (otherw1se) I =T,
F3
)

rep
1y [[P,] = \S>r.[xpmpr=vw] [ [P,]*S), if (rep,[R )\ [P,]1%S),=1S),.[[P,]*S), (other-
wise) I', =T,

Every rule includes two parts: 1) The mapping from a session to a typed pi-calculus process of each role;2) The mapping
from the type assumption set of global choreography to the type assumption set of the typed pi-calculus process of each role.
Because the mapping is proceeds recursively, the mapping of the type assumption set is performed only when the sessions
Sreqs Stespr Srequesp OF Saien ar€ being mapped. The type assumption set I", of the pi-calculus process is constructed by & opera-

tor which is defined in Ref. [10].
4 Case Study

assign

To illustrate how the operation semantics and typing rules of typed abstract WS-CDL can be used to formally reason and
check the type consistency of web service choreography, let us consider the following scenario of web shopping which is de-
picted in Fig. 1.

| 2w | __w2d
| w2el_|© w0 i
Consumer oi s Webshop @<- ------ Delivery Bank
0 [T 0 o
Mo w2b__| b
2w ]
po
- po R
po
Send
o B Bill
B en.
< Bill
/

Fig.1 Web shopping service choreography

The system is composed of four roles whose names are ¢, w, d and b representing the consumer, the webshop, the delivery
and the bank. The consumer sends purchase order po to the webshop through channel c2w; once having received the po, the
webshop initiates two parallel sessions: webshop forwards po to the delivery and bank through channels w2d and w2b; the
delivery responds by returning the delivery information sent to the webshop through channel d2w while the bank responds by
returning the bill to the webshop through channel b2w, and then the webshop forwards, sends and bills to the consumer
through channel w2cl and w2c2, respectively. The choreography of the four roles can be described as the following ses-
sions:

Order =req(c, w, c2w@ w. o,, c[ po] »w[ po])
Bill =req(w, b, w2b@ b. o,, w[ po] —b[ po]) . resp(w, b, b2w@ w. o,, w[ bill] «—b[ bill] ).
resp(c, w, W2c2@ c. o,, c[ bill] «—w[ bill] )
Send =req(w, d, w2d@ d. o,, w[ po] —d[ po]) . resp(w, d, d2w@ w. o,, w[ send] «—d[ send] ) .
resp(c, w, w2cl@ c. o,, c[ send] «—w[ send] )
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Chor = Order. (Bill || Send)

Suppose the types of data exchanged are all string and the types of channels c2w, w2cl, w2c2, w2b, b2w, w2d, d2w are |
w. o,(string), | c. o,(string), | c. 0,(string), T b. o, (string), | w. o,(string), T d. o,(string), | w. 0,(string), respec-
tively. Thus the largest type assumption set I", . of Chor is

chor

I, =T, .8, ®I.,={2w: T w.o,(string)
w2b: 1 b. o,(string), b2w: | w. o,(string)
w2c2: | c. 0,(string), w2d: T d. o,(string)
d2w: | w. o,(string), w2cl: | c. o,(string),
c[po]: R(string), w[ po] : RW(string), b[ po] : W( string)
w[ bill] : RW(string) , b[ bill] : R(string), c[ bill] : W( string)
d[ po] : W(string) , w[ send] : RW(string) , d[ send] : R( string), c[ send] : W( string) }

Under the type assumption set I, and according to the typing rules defined in section 2. 3, we can check the type consis-
tency of choreography and show that Chor is a well typed session with the following inference steps:
1) The type of w[po] can be inferred to have type W (string) under ", by rule TSUB since we have

chor
Iy <; Fwlpol: RW(string) A\ <, = RW(string) < W(string)

2) Session Order is well typed according to rule TREQ since we have
I,.Fc2w: Tw. o, (string) AT, <, c[pol: R(string) AT, <, w[po]: W(string) A <, + string <string
3) Similarly, the following three atomic sessions are well typed according to the rules TREQ and TRESP.

req(w, b, w2b@b. o, w[ po] —b[ po])
resp(w, b, b2w@ w. o,, w[ bill] «—b[ bill] )
resp(c, w, W2c2@ c. o,, c[ bill] «—w[bill])

4) On the basis of step 3), we have I',, ., <, = Bill by rule TSEQ.

5) Repeating inference steps 2) to 3), we have ', <, I Send.

6) Finally, the choreography of the four roles is well typed by rules TPAR and TSEQ.

Moreover, we can also reason on the execution of Chor with the operational semantics of the typed abstract WS-CDL. The
exhaustive inference details are not listed here anymore.

After having formally verified the execution and type consistency of Chor in the global choreography layer, we can gener-
ate the typed pi-calculus process of each involved role from Chor and verify the execution and type consistency of them in
the orchestration layer. By the typed mapping rules defined in section 3, the pi-calculus processes of roles ¢, w, d and b (de-
noted as P, P, P, and P, respectively) are

P = %po. (wW2c2(bill: string) . 0 \ w2cl(send: string). 0), P, = w2d(po: string) . d2wsend. 0, P, =w2b(po: string) . b2whill. 0
P, =c2w(po: string) . (w2bpo. b2w(bill: string) . w2¢c2bill. 0 | w2dpo. d2w( send: string) . w2clsend. 0)

and the type assumption sets of P, P,, P,, P, are

I'. = {c2w: out(string) , w2cl: in( string) , w2c2: in( string) , po: string}
I, = {w2d: in( string, d2w: out( string) , send: string }
I', = {w2b: in(string) , b2w: out( string) , bill: string }
I', = {c2w: in(string) , w2b: out( string) , b2w: in( string) , send: string, bill: string, w2cl: out( string) ,
w2c2: out( string) . w2d: out( string) , d2w: in( string) , po: string }

According to the definition of @ operator on the type assumption set and the typing rules for the typed pi-calculus that we
have proposed in Ref. [ 10], we can infer that P_, P,, P,, P, are all well typed under type assumption set I (I, =1.D
r',®r,®r,). The local behavior of P_, P,, P, P can be verified by MWB, a tool for manipulating and analyzing mobile
concurrent systems described in the pi-calculus'”. Using the deadlocks and step commands in MWB, we determine that the
parallel composite process P, | P, | P, | P, has no deadlocks and can successfully terminate.

Finally, let us consider the cases of capturing run-time errors due to type mismatches. Suppose that the type of po sent
from the consumer to the webshop is int, and then by rule ERR-REQ and ERR-SE, we have

Toos <5 2w Tw.o,(string) AL ,,, <, clpol:R(int) AT, <, w[po]:w(string) A <, - intgstring

cho

Lo <7 :req( ¢, w,2w@w. o,, c[po] —w[po])
NULL
req(c, w, 2w@ w. o,, c[ po] —w[po])——Err
NULL
Chor —Err
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that is, the run-time errors due to type mismatches can be captured by the rules defined in section 2. 4.
5 Conclusion

In this paper we propose a typed formal model for WS-CDL specification. Within the model, the operation semantics can
help to reason the execution of web service choreography and capture run-time errors due to type mismatches while the typ-
ing rules can check the type consistency. The properties of our model are given and proved. The typed rules for mapping cho-
reography to orchestration are defined so that web services composition can be verified in choreography and orchestration
levels, respectively.
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