Journal of Southeast University (English Edition)

Vol. 24, No. 3, pp. 365 - 368

Sept. 2008 ISSN 1003—7985

Service composition algorithm using semantic constraint
to implement user personality

Shi Bin Wang Haiyang

Cui Lizhen Shi Yuliang

(School of Computer Science and Technology, Shandong University, Jinan 250101, China)

Abstract: In order to improve the efficiency and quality of
service composition, a service composition algorithm based on
semantic constraint is proposed. First, a user’s requirements and
services from a service repository are compared with the help of a
matching algorithm. The algorithm has two levels and filters out
the services which do not match the user’s constraint personality
requirements. The mechanism can reduce the searching scope at
the beginning of the service composition algorithm. Secondly,
satisfactions of those selected services for the user’s personality
requirements are computed and those services, which have the
greatest satisfaction value to make up the service composition, are
used. The algorithm is evaluated analytically and experimentally
based on the efficiency of service composition and satisfaction for
the user’s personality requirements.
Key words: web service; service
similarity; personality; constraint

composition; semantic

web service has the characteristics of platform-inde-

pendence, self-description, modularization and reuse-
ability which strongly support large-scale web service appli-
cations. In finance, tourism and other service areas, more and
more services have been published in the form of a web
service. As applications of web services expand, inadequa-
cies of web services appear: First, the WSDL description of
service is lack of semantic support, which is hard for the
computer to understand, so service querying is neither effi-
cient nor accurate; secondly, as the ability of a single web
service is limited, the user’s complex requirements are diffi-
cult to be met.

In order to resolve these problems, we create a related do-
main ontology and expand the OWL-S description according
to the user’s personality requirements. OWL-S is a mature
semantic web solution. It marks parameters of service with
ontology. The ServiceProfile part of OWL-S contains func-
tional descriptions of the service. They are Input, Output,
Precondition and Effects, which is called IOPE for short.
They are the main parts of semantic matching. The informa-
tion in ServiceModel is about service composition and data
flow. As its capability is poor, we use BPEL as the engine to
control the business process in actual applications.

OWL-S supplies semantic descriptions for the service.
However, service composition still cannot be achieved. The
methods of service composition are mainly in three areas,

Received 2008-04-15.

Biographies: Shi Bin(1983—), male, graduate; Wang Haiyang(correspond-
ing author) , male, doctor, professor, why@ sdu. edu. cn.

Foundation items: The National Natural Science Foundation of China (No.
60673130), the Natural Science Foundation of Shandong Province (No.
Y2006G29, Y2007G24, Y2007G38) .

Citation: Shi Bin, Wang Haiyang, Cui Lizhen, et al. Service composition
algorithm using semantic constraint to implement user personality[J]. Jour-
nal of Southeast University (English Edition), 2008, 24(3): 365 —368.

but all of them have their limitations: the workflow methods
need the user’s disposal or templet' ™', so the automation
and efficiency is low; the Al methods need to transform
service formats and pretreatments which are complicated and
difficult to understand and implement'” ; the graph searching
methods have significant costs on composition"™'. Howev-
er, the third one is easy to be implemented.

The service composition proposed in this paper focuses on
meeting user personality. Suppose that in travelling to
Mountain Lu, the scheme for the elderly and the student will
be different, because they have their own personalities. The
capability of OWL-S’s precondition is not enough'*™”, so we
add some extended properties, such as weather, price of
service, location and so on, to OWL-S while the service is
registered.

The new service composition algorithm based on graph
searching implements the user’s personality requirements.
The user’s personality requirements are used to filter the
services from service repository.

1 Algorithm Description
1.1 Travel ontology

There are two types of ontologies in travel ontology. One
is a travel-related ontology, such as flight, ticket, hotel, city
and so on; the other is a travel-independent ontology which
is the concept used not only in travel but also in daily life,
for example time, fare, discount, weather. These two types of
ontologies contact each other by the relationship of inherit
and citing.

Fig. 1 shows a part of the relationship in a travel ontolo-
gy. The broken line means inherit and the real line means re-
lationship of citing. As a subclass of Ticket, AirTicket inher-
its “hasfare” which is the relationship between Ticket and
Fare.

1.2 User’s personality requirement

Definition 1 User requirement UR (UR,,, UR
UR,,) is a triple. The input of user’s requirement UR,
(In,, In,, ..., In,) and the output UR_, (Ou,, Ou,, ..., Ou,)
contain functional parameters of service. UR

outp?

outp

con
per < URper >

UR:Z:>contains user’s personality requirement.

Definition 2
(Pe,, Pe,, ..
to be met, just like the location, weather and so on. It can be
used to filter redundant services.

Definition 3 Oriented personality requirement UR
(Pe,, Pe,, ..
ample, the students think more about price, so the train is
satisfactory; however, time and comfort is more important to

con
per

Constraint personality requirement UR
., Pe,) is the personality requirement which has

m

bet
per
con

por - FOT €X~

., Pe,) has fewer constraints than UR

366

Shi Bin, Wang Haiyang, Cui Lizhen, and Shi Yuliang

SubClassOf h AN AN
/ SubClassOf AN o~
/ :) SubClassOf
/ '\ SubClassOf s
\ AN
\ N
\ AN
hasAnpo \ A
hasAirticket \ A
hasPlane SubClassOf \\ \\\
@ @ hasthasmscm
hasTicketNo. hasSeatClass hasOriginalFare has
4
G | CORCECEE
economy seats

Number of

business seat

Fig.1 Part of travel ontology

the merchant, so the plane is preferred. When there is no
plane, the train can be used instead. Algorithm 1 shows how
to compute satisfaction of service for UR™::

per
bet

Algorithm 1 Service’s satisfaction § for UR

Oriented personality requirement URI'jZ‘r(Pe,, Pez, ..., Pe))
contains # items that need to be met. For each item Pe,, we
compute the corresponding property’s satisfaction S,. S, e
[0, 1], the more S, closes to 1, the better the matching is.

There is a service WS in the Set_ and the user’s oriented

personality requirement UR (Pe,, Pe,, ..., Pe,). The WS’s

per
bet -

satisfaction for UR .

N2

i=1

bet

where iy, is the weight of Pe, in the UR ;. The enactment of
weight should accord with the user’s personahty. From algo-
rithm 1 we know that S is less than 1 and larger than 0. If
all the satisfactions of WS’s properties for Pe, are smaller
than the threshold ¢, WS’s satisfaction S, for URE: is 0.

1.3 Service composition

Definition 4 OWL-S description (Ser., Serg,, Ser,,
Ser,,, Sery) is a quintuple vector. Ser. contains service
name, description and other information for users to read.
Sery,, is (In,, Out,). In, = (In,, In,, ..., In,) is input pa-
rameters. Out, = (Out,, Out,, ..., Outj) is output parameters
of service. Ser, =(P,, P,, ..., P) is the extended properties
of service. Ser,, and Ser,; are the service information for im-
plement and independent of our discussion. Some extended
properties of service are shown as follows:

(personality)
(personality: addproperties)
(personality: addproperty)
(personality: parameterType rdf: datatype = “travel-

ontology#city”/)
(personality: dataproperty rdf: dataname = “name”/)
(personality: value rdf: value = “Guilin”/)
(/personality: addproperty)
(personality: addproperty)
(personality: parameterType rdf: datatype = “travel-
ontology#fare”/)
(personality: dataproperty rdf: dataname =
Fare”/)
(personality: dataconstraint rdf: constraint = “no-less-
than”/)
(personality: value rdf: value = “500”/)
(/personality: addproperty)
(personality: addproperty)
(personality: parameterType rdf: datatype = “travel-
ontology#hotel”/)
(personality: dataproperty rdf: dataname = “star”/)
(personality: value rdf: value = “3”/)
(/personality: addproperty)
(/personality: addproperties)
(/personality)

“actual-

From the above extended properties we know the location
of service is Guilin, the lowest cost is RMB 500 yuan and
the hotel is a three-star hotel.

Definition 5 The semantic matching in this paper has
two levels. In the lower level, the matching can be divided
into four types: Exact, Plugin, Subsume and Fail. The input
of user requirement UR, is In. The output is Ou. The item in
service input In, is In,. The item in service output Out, is
Out,. If the following three conditions can be met, the matc-
hing on the lower level is successful:

1) Exact matching: InIn, or OusOut

2) Plugin matching: In_ contains In;

3) Subsume matching: Ou contains Out

All the other conditions are failing. The upper level is log-
ical-based. Users’ input is UR; . What the users want is
UR,,,- Service input is In,. Serv1ce output is Out,. If the fol-

outp *

lowing conditions can be met, the service matches the user’s

Service composition algorithm using semantic constraint to implement user personality 367

personality requirements:
1) UR, <In, or UR , &0ut,;
2) YVIn(IneIn,=Ine UR,), viz. UR, 2lIn,;

inp inp =
3) YOu(OueUR_, ,=0ueOut,),viz. UR , COut,.

outp outp —

Algorithm 2 The service composition algorithm based
on user personality

Input: User requirement UR(UR
repository R(WS);

Output: Service composition.

Step 1 Search in repository R. If the output of service
WS and UR,,, matches, go to step 3. Use UR] to filter
services from repository R and add the matching service to
the candidate service set Set

Step 2 Search in Set_,. If the input of service WS mat-
ches user requirement UR, , add WS into selected service
set Set. and delete it from Set . Then merge the output of
WS into the set OutP,. If OutP, matches UR,,, after
searching Set,, , go to step 3; else if Set_,, is not null, merge
OutP,, into UR, and go to step 2;if Set,, is null or the
services number in Set_, has no change, go to step 4;

Step 3 Compute the satisfactions of services with the
same input and output parameters in Set_, . Then select the
biggest one as a component of service composition and add
it to the component list WS, . Go to step 5;

Step 4 The composition fails;

Step 5 Arrange the services in WS, in reverse. The re-

sult is the service composition.

UR UR_), service

inp? outp * per

can?

Exposition of algorithm 2: The aim of filtering the serv-
ices and comparing the services number of Set_, in step 2 is
to avoid ending up in cycles. Our method gains a preferable
result, and the costs of time and space are little. From algo-
rithm 2, we know that the algorithm just contacts service re-
pository R once and the rest of the computing occurs in
Set.,,, which can reduce the costs of time greatly.

cur?

2 Experiment and Analysis

In order to validate the efficiency of our method, we
choose nine groups of services. The scale of services is be-
tween 100 and 600.

From Fig. 2, we can know that as the number of services
increases, the effects of constraint personality requirements is
more and more obvious. The reason is that irrelevant serv-
ices need not to be added to Set_, and need not be involved
in the following computation. So the more complicated the
composition is, the more time can be reduced.

140
120l =+ Consider personality
ol = Not consider personality

&3 &

Time of composition/ms

o 8

100 160 220 280 340 400 460 520 580
Number of services
Fig.2 Time cost of service composition

Fig. 3 reveals user satisfaction for service composition.
From Fig. 3, we can know that when the personality require-
ment is considered, user satisfaction is enhanced as the num-
ber of services increases.

1.0
75
o9
=
2o
2 =+ Consider personality
-é 0.7 -=- Not consider personality
Lg lm
;% 0.6
0.5

100 160 220 280 340 400 460 520 580
Number of services
Fig.3 Satisfaction of service composition

However, when we do not consider the personality re-
quirement, the improvement of satisfaction is not obvious.
So we can conclude that the satisfaction cannot recede as the
number of services increases when the personality require-
ment is considered.

3 Conclusion

With the constraint of the user’s requirements, the service
composition algorithm deletes many redundant services at
the beginning of service composition. It reduces the search-
ing space of services, accelerates the service composition and
provides a service composition which satisfies users most ac-
cording to their requirements. Proved by experiment, this al-
gorithm not only improves speed of composition but also
improves user satisfaction for composition results. In future,
we will consider the relationship between services in order to
provide a more intelligent service composition.

References

[1] Aversano L, Canfora G, Ciampi A. An algorithm for web
service discovery through their composition [C]//Proc of
the 2004 IEEE International Conference on Web Services.
San Diego, California, USA, 2004:332 —341.

[2] Hu H T, Li G, Han Y B. An approach to business-user-orien-
ted large-granularity service composition [J]. Chinese Jour-
nal of Computers,2005,28(4):694 —703. (in Chinese)

[3] Xu M, Chen J L. Integrating semantic business policy into
web service composition [C]//Proc of the 1st International
Workshop on Service Oriented Modeling. Berlin: GITO-Ver-
lag, 2006: 84 —95.

[4] Xie X Q, Chen K Y, Li J Z. A composition oriented and
graph-based service search method [C]//Proc of the 1st
Asian Semantic Web Conference. Beijing, China, 2006: 530 —
536.

[5] Hashemian S V, Mavaddat F. A graph-based framework for
composition of stateless web services[C]//Proc of the Euro-
pean Conference on Web Services. Ziirich, 2006: 75 —86.

[6] Xu M, Chen J L, Peng Y, et al. Service relationship ontology-
based web service creation [J]. Journal of Software,2008, 19
(3):545 —556. (in Chinese)

[7] Liu Z Z, Wang H M, Zhou B. A two layered P2P model for
semantic discovery [J]. Journal of Software, 2007, 18(8):
1922 —1932. (in Chinese)

368 Shi Bin, Wang Haiyang, Cui Lizhen, and Shi Yuliang

FIREBEXARIAHRPITEUNRSAGRE X
£k E#E fEf RER

(b A XFHEAFER AR SR, Fd 250101)

WE A TRABSBAEGRERLE, RET A TELY RSB FE kb, 52 BiEL
B k5T A P E AR S 69 RS- AT A, AR A P 4 RO AN AL E KA A A IE B 6d IR 43 AT 0% 3k, K
e — B 45 T IR G- 6 ok pATIE AR PRS- 0930 R =), R G R R 69 R 520640k 47 A P AS G A
PEALE KT B P RS P ABAE KGR S M R R AW RS- 404 B 45 LRI E M, 3% F ik A 2R
B2 T IRG A Sk 0 IBAT AR SF ARIE T A P 69 AN AL F SRAF B s K 2

SE4IF] c web SRS ; IR 42 A 35 SRR s ANPEAL s 49 R

HREHES TP311

