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Abstract: Based on the frequency domain training sequences, the
polynomial-based carrier frequency offset (CFO) estimation in
multiple-input multiple-output ( MIMO ) orthogonal frequency
division multiplexing ( OFDM ) systems is extensively
investigated. By designing the training sequences to meet certain
conditions and exploiting the Hermitian and real symmetric
properties of the corresponding matrices, it is found that the roots
of the polynomials corresponding to the cost functions are
pairwise and that both integer CFO and fractional CFO can be
estimated by the direct polynomial rooting approach. By
analyzing the polynomials corresponding to the cost functions and
their derivatives, it is shown that they have a common polynomial
factor and the former can be expressed in a quadratic form of the
common polynomial factor. Analytical results further reveal that
the derivative polynomial rooting approach is equivalent to the
direct one in estimation at the same signal-to-noise ratio( SNR)
value and that the latter is superior to the former in complexity.
Simulation results agree well with analytical results.
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rthogonal frequency division multiplexing( OFDM)is a

leading modulation technique for wide-band wireless
communications. Combining it with multiple-input multiple-
output( MIMO) multi-antenna technique promises a signifi-
cant increase in practically achievable throughput over wire-
less media. The performance of OFDM systems, however, is
sensitive to carrier frequency offset ( CFO) caused by
Doppler effects or the mismatch between transmitter and re-
ceiver oscillators. Accurate estimation and compensation for
CFO is, therefore, very important for realizing the advanta-
ges of MIMO OFDM.

CFO estimation is a well-studied problem for single an-
tenna OFDM systems[H], but a relatively new one for MI-
MO or MIMO OFDM systems'> . Numerical calculations of
the CFO estimators in Refs. [5 — 6] required a large point
discrete Fourier transform( DFT) operation and a time con-
suming line search. To reduce complexity, computationally
efficient CFO estimators were introduced in Refs. [7 —9].
Especially, for the training aided CFO estimators in Refs. [8
—9], integer CFO (ICFO) was estimated first by a subcarri-
er-size DFT operation, and then fractional CFO( FCFO) was
estimated by the roots of a complex-coefficient or real poly-
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nomial corresponding to the cost function. Besides, it has
been shown recently in Ref. [ 10] that the CFO estimation
via polynomial rooting indirectly from the first-order deriva-
tive of the cost function outperformed that via polynomial
rooting directly from the cost function.

In this paper, grounded on the CFO estimators in Refs. [8
—9] and by designing the training sequences properly, we
propose to estimate ICFO and FCFO through the roots of the
corresponding complex or real coefficient polynomials di-
rectly, and thus without the need of the subcarrier-size DFT
operation. Moreover, we reveal the relationships between the
polynomials corresponding to the cost function and their
first-order derivatives, and show that the derivative rooting
approach is equivalent to the direct rooting approach for our
considered MIMO case, which is quite different from the
blind single antenna case as shown in Ref. [10].

1 Signal Model

We consider a MIMO OFDM system with N subcarriers,
N, transmit antennas and N, receive antennas. Let

M = | P/N, |

0=i, <i; <...<i,<...<iy  <Q=N/P
where | | denotes the floor operation, and i, is an integer.
Define

+0 +(P-1)Q
O,=[ey,e;'", ..., e} ]

where e}, denotes the g-th column vector of the N x N identi-
ty matrix I,. Let s denote a length-P Chu sequence''. De-

fine 5, = \/O/N,F .5 where F, denotes the P x P unitary
DFT matrix, and s*" denotes the uM-cyclic-down-shift ver-
sion of s with uM >0. Then, the training vector at the u-th

. . 8-9
transmit antenna is constructed as fOHOWS[ JZ

tu = @hs#

For convenience, we henceforth refer to {z, }Z‘:’Ol as the Chu
sequence-based training sequences( CBTS) .
Assume that all the transmit-receive antenna pairs are af-

fected by the same CFO. Define

DN(E) — dlag{ [ 1 , ej2‘rre/N’ s ejZTrs(Nfl)/N] T }

where diag{} denotes a diagonal matrix with the elements of
the vector within the brackets on its diagonal, and & is the
frequency offset normalized by the subcarrier spacing. Sup-
pose that the length-L channel impulse response from the
p-th transmit antenna to the p-th receive antenna is denoted
by the L x 1 vector h**. Define
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7 (v 0 L1 p(r
h"" =F,ley, ey, ....,ey 1h""

Then, after removing the cyclic prefix (CP) at the p-th re-
ceive antenna, the N x 1 received vector y, can be written

6
as[ 1

N-1

y, = /Ne"™"D (&) Y {Fydiag{h™"'}t,} +w, (1)

n=0

where N, denotes the length of the CP and is supposed to be
longer than the length of the channel impulse response L,
and w, is an N x 1 vector of additive white complex Gaussi-
an noise( AWGN) samples with zero-means and equal vari-
ances of o, Lety =[y,, ¥/, ... ¥, ..., ¥y _, ] denote the
NN x 1 cascaded vector from the N, receive antennas. Then,

. 89
y can be written as'®™”!

y =V/Ne"™" (I, ®[D,(&)S]}h +w (2)

where

h=[hy,h,...h,.. ¢, 1"

hV — [(h(u.O))T, (h(y,]))T’ . (h(u,,u,))T’ e (h(V,N.—I))T]T

S = {1, @Fy}diag{[ .1, ....5, 17}
(I, Q[ F,l ey, ey, ....e5 ' 11}

_ T T T T T
w=[w,,w,....w, ~-~’WN,-1]

v

®denotes the Kronecker product operator, and 1, denotes
the N, x 1 all-one vector.

In the following, unless otherwise stated, we assume
(N),,=0,0<p<P-1,0<sg=<0Q0-1,0<spu<N -1and 0
sv<N, -1.

2 Training Aided CFO Estimation for MIMO
OFDM Systems via Polynomial Rooting

2.1 CFO estimation for MIMO OFDM via direct poly-
nomial rooting

By exploiting the periodic property of the training se-
quences, the received vector y can be stacked into the Q x
NP matrix Y=[Y,,Y,,....Y , .., Y, 1. where

[YV] q,p = [yv] qP+p

Let B.=&+ i#. Then, Y can be expressed as

Y=BX+W (3)
where
B=[b,b,...b,,....b, ]
b, =11, QP P oPm0-D/OT

X=0X0. X, s X0 o X,y

v

0 (w1 . N-1)q T
X =[x, x™" oxe L x™N

v

0 = [PFND (B Fldiag (s, )07 R

and W is the O x N P matrix generated from w in the same
way as Y.

Let L denote a Q x Q unitary column conjugate symmetric
matrix. Define

~ R(L"YY"L)

B=""0p

where R() denotes the real part of the enclosed parameter.
Let E, denote the Q x N, real matrix which contains the uni-
tary eigen-vectors spanning the signal subspace of ft’n,. De-
fine

_ o
z=e""",

e (3)

N ale) =118 .., 8%")

a(z) ={1,z, ...,z
Then, we can estimate {8, }:":’01 by the roots of either a com-
plex-coefficient polynomial or a real-coefficient polynomial
as follows"™™:

f(2) =a"(9)A%a(2) =0 (4)
f(g) =a’(g)A’a(g) =0 (3)

where
A*=JL[I, - EXE;] L"

A"=@"L[1,-EE{1L"®

J denotes the Q x Q exchange matrix with ones on its anti-
diagonal and zeros elsewhere, and @ is the Q x O column
conjugate symmetric matrix with its elements given by

min{g, ¢')

_ j0-1-¢
g =)

[¢] {CZ”C"'—CIH ( _ l)Q—l—q—q'+qrr}

g =max{0, g +q' ~Q+1} ot

and CZN =q!/[(g-4g")!q"]. Note that @"L is a real ma-
trix due to the column conjugate symmetric property of both
@ and L. Let A°(z) and A"(g) denote the polynomials
transformed from the cost function. Then, we can obtain'®

A(2) =7 %" (2)Aa(z) (6)
A'(g) =(g +1) “a’(g)A’a(g) (7)

Due to the Hermitian property of JA®, we establish from
Eq. (4) that

£zl 7™y =z N ()T (8)

Hence, the roots of f°(z) =0 are pairwise and in the form of
{z. |z] "™ }. Note that the roots of the polynomial
equation f°(z) =0 always exist no matter whether noise is
absent or present, which is quite different from the analysis
in Ref. [10]. Due to the real symmetric property of A", we
immediately establish that the roots of f"(g) =0 are also
pairwise and in the form of {R(g) +jl(g) }, where we have
used the relationship @"L = @'L* and I() denotes the
imaginary part of the enclosed parameter. In the following,
the pairwise property of the roots of f°(z) =0 and f*(g) =0
are exploited for the CFO estimation.

To estimate the CFO, we first find the N, pairwise roots of

f(z) =0 which are the closest to the unit circle, {z,,
“1_jarg(z) \N,-1 . . T —
\Zﬂ‘ ey or the N, pairwise roots of f'(g) =0

whose imaginary parts have the smallest values, {R(g,)

w=0"

£jl(g,) }:":’01. Due to the influence of noise, the so-obtained
N, pairwise roots of f*(z) =0 or f(g) =0 may not corre-
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spond to {,8#}:’;’01 at a low signal-to-noise ratio( SNR). To
reduce the influence of noise, we set a threshold A, and
compare A°(z,) or A"(R(g,)) with A,.If A°(z,) or A"(R
(g#)) exceeds A, we find the N, pairwise roots of f°(z) =0
or f"(g) =0 whose corresponding values of A°(z) or
A'(R(g)) are the smallest. Then, we can readily estimate

{B,})", from the N, pairwise roots {z,, |z, | '’} [ or
{R(g,) £jl(g,)}\7, as follows:
5 /2
B = (Lareczy) 9)
w 0
3 - (£
B, = _acot[R(g,)] (10)
m 0

where (), denotes the remainder of the number within the
brackets modulo Q.

Let &, and g, denote the ICFO and FCFO, respectively.
Then, B, can be decomposed as B,=& te + i#. Hence, by
imposing proper design conditions on our CBTS training se-
quences, we can estimate ¢, and ¢, from {$,}"". Define

&t :NLZ{‘BM —round(,é’#) |} (11)

t p=0
where round() denotes the round operator. To avoid the am-
biguous estimation when g, is near 0 or +1/2, we set il’L =
( LB# ] )o if &, exceeds 1/4, or else we set i, =
(round(ﬁA#))Q. Then, the FCFO can be immediately esti-
mated as

s = ;—Z{B i) (12)

Let I denote the pilot location vector which is given by /
N,-1

= 2 eg . To ensure the identifiability of the ICFO estima-
w=0
tion, we impose the following conditions on I:

(1, =D >0  VYge {l,2,...0 -1} (13)

N,-1

Define I’ = z eg . Then, the ICFO can be uniquely esti-
n=0
mated as

é, = arg max {11} (14)
-0 <q<0/2

Note that the ICFO estimation approach in this paper can

be applied to relatively benign channel environments. For

bad channel environments where the SNR is often around or

lower than O dB, we can still use the approach in Refs. [8 —

9] whose ICFO estimator is very robust against noise.

2.2 Analysis of the direct rooting approach and the de-
rivative rooting approach

It has been shown recently in Ref. [10] that CFO estima-
tion via polynomial rooting from the first-order derivative of
the cost function is superior to that via polynomial rooting
from the cost function in blind single-antenna OFDM sys-
tems. Note that the derivative rooting approach in Ref. [10]
can be applied directly in our considered MIMO OFDM sys-

tems. In this paper, we will, however, show that these two
approaches are equivalent in MIMO OFDM systems.

Let E,, denote the Q(Q - N,) real matrix which contains
the unitary eigen-vectors spanning the noise subspace of
R,,. Then, we have

E\Ey +E\E} =1, (15)

Besides, since L is a column conjugate symmetric matrix,

we also have

JL=L" (16)

Hence, °(z) and f'(g) can be further expressed as
() =[k(2) ]k (2) (17)
(g =[k'(g)1'k'(g) (18)

where
k'(z) =E,L"a(z)
k() =E, L"®a(g)
Correspondingly, A°(z) and A'(g) can be expressed as
A(2) =2 [k ()] (2)
A'(g) =(g +1) [k ()] (g)

Taking the first-order derivative of f°(z) and f'(g) with
respect to z and g respectively, we immediately establish

(2 _, dl(k*(2)"]

(19)
(20)

dz d k°(z) (2D
df'(g) _,dl(k' ()",
dg =2 dg k'(g) (22)

Note that A°(z), f°(z) and dfdﬂ have the common
z

polynomial factor k°(z), while A"(g), f (g) and dfd%

have the common polynomial factor k"(g) .
Let z, = e/ g, =cot(mp,/Q). In the ideal case with-
out considering noise, we have

f(z) =0, f(g) =0 (23)

Besides, A°(z) and f°(z) can also be written into the fol-

lowing equivalent forms'':

A(2) =[k(2)1"k(2)
f(2) =z°""[k(2)]1"Kk(2)

We can see from Eqgs. (18)and (25) that f(z,) =0 and
f'(g,) =0 hold if and only if

(24)
(25)

kc(zﬂ) =0Q*N.’ kl(gﬂ) =0Q*Nl (26)

Due to the common polynomial factors k°(z) and k'(g),
it follows immediately from Eq. (26) that

df*(2)

dz  |... =0

A*(z,) =0 (27)
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df'(g)

=0, A'(g) =0
dg .-y, 8

(28)

From the above analyses, we can see that the roots from
the direct rooting and derivative rooting approaches corre-
spond to the same ones which make k“(zﬂ) or k'( g#) equal
0,_, in the absence of noise or approximately equal 0,_, in
the presence of noise, where 0,_, denotes the (Q - N)) x 1
all-zero vector. In this way, we can say that the derivative
rooting approach is equivalent to the direct rooting approach
for the considered MIMO case, which will be verified by
simulation results in the next section.

2.3 Computational complexity

For description convenience, we only consider the real-co-
efficient polynomial case here. For the direct rooting ap-
proach, the N, pairwise roots of f*(g) =0, whose imaginary
parts have the smallest values, match well with the ones,
whose corresponding values of A"(R(g)) are the smallest,
at high SNR completely and at low SNR mostly, which can
be easily verified through simulations. Therefore, the direct
rooting approach only occasionally needs to calculate the
values of the cost function A"(R(g)) with respect to the
roots of f"(g) =0 at low SNR. Hence, the computational
load of the direct rooting approach mainly involves the
eigen-decomposition of IA?YY and the root-calculation of f( g)

=0, which require 90 and 6?4( Q - 1)° real additions or

multiplications' "', respectively. While for the derivative

rooting approach, although its computation is decreased
f (8
dg

slightly due to the degree reduction o in comparison

with f"(g), it still needs an additional complicated calcula-
tion of the values of the cost function A"(R(g)) with re-
of Y& _ o which
dg
4(0-3/2)(Q-N,)Q(Q +1) real additions or multiplica-
tions. Therefore, the direct rooting approach has lower com-
putational complexity than the derivative rooting approach.
Besides, since the direct rooting approach does not need the
DFT operation, its complexity is also lower than that in
Refs. [8 —9].

spect to the roots require

3 Simulation Results

We provide simulations to validate the theoretical analysis
and also to evaluate the performance of the proposed CFO
estimators with the CBTS training sequences. In the simula-
tions, the major parameters are set as follows: carrier fre-
quency f, =5 GHz, bandwidth B =20 MHz, subcarrier num-
ber N =1024, CP length N, = 64, the number of transmit an-
tennas N, = 3, the number of receive antennas N, =2. The
channels are assumed to be independent and have four un-
correlated Rayleigh fading taps each. The relative propaga-
tion delays of the four taps are chosen to be equal to {O,
0.1,0.2,0.4} ws, and the variances of the taps are {0,
-9.7, —19.2, -22.8}dB. The normalized CFO ¢ is gen-
erated within the range( — Q/2, Q/2]. For description con-
venience, we refer to the CFO estimator in Refs. [8 —9], the
CFO estimator via derivative rooting and the one via direct
rooting proposed in this paper as estimator A, estimator B

and estimator C, respectively.

As was pointed out in Ref. [ 14], the extended Miller and
Chang bound (EMCB) can be tighter than the Cramer-Rao
bound( CRB). In the following, we adopt the EMCB to
benchmark the performance of the considered CFO estima-
tors via polynomial rooting. The EMCB is obtained by aver-
aging the snapshot CRB over independent channel realiza-

tions"* ™" as follows:
EMCB, = E Nor, (29)
s {8ﬂ2h”X“B[IM -X(X"X) "X”]BXh}
where

X=1,®S
B =1, @diag{[N,,N, +1,...,N,+N-1]"}

and E{ - } denotes the expectation operator. The EMCB,
cannot be written in a closed form, and we resort to Monte
Carlo simulations for its evaluation in this paper.

Fig. 1 shows the mean square error (MSE) performance of
the considered three CFO estimators via complex-coefficient
polynomial rooting with P =128, 0 =8 and P =64, Q = 16.
Fig.2 presents the MSE performance of the CFO estimators
via real-coefficient polynomial rooting. The corresponding
EMCBs are also included in the two figures. We can see that
estimators A, B and C via complex-coefficient polynomial
rooting have almost the same MSE performance. While for
the real-coefficient polynomial case, estimators B and C out-
perform estimator A at all considered SNR values, and esti-
mator C slightly outperforms estimator B at low SNR values,
which is due to the influence of noise. Actually, in the ideal
case without noise, the three estimators via real-coefficient
polynomial rooting also have almost the same MSE perform-
ance. We can see that the simulation results support the theo-
retical results very well; i. e., the derivative rooting approach
is equivalent to the direct one for the considered MIMO case,
except for a slight mismatch at low SNR in Fig. 2.

10731
—4— Estimator A (128 x 8)
—=— Estimator B (128 x 8)
—*— Estimator C (128 x 8)
—a— Estimator A (64 x 16)

10741 —o— Fstimator B (64 x 16)
—o— Estimator C (64 x 16)

g —*— EMCB
1075}
024 6 8§ 10 12 14 16 18 20

SNR/dB
Fig.1 MSE performance of the CFO estimators via com-
plex-coefficient polynomial rooting

In Fig. 3, we show the MSE performance of the CFO esti-
mator in Refs. [8 —9] via complex-coefficient and real-coef-
ficient polynomial rooting at low SNR. It can be seen that
the estimation performance is satisfactory and acceptable
even when the SNR is quite lower than 0 dB. Therefore, in
environments which are affected greatly by noise, we can
employ the estimator in Refs. [8§ —9].
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1073 —a— Estimator A (128 x 8)
—=— Estimator B (128 x 8)
—o— Estimator C (128 x 8)
—— Fstimator A (64 x 16)
10-4T —o— Estimator B (64 x 16)
—o— Estimator C (64 x 16)
= —+—EMCB
=
10751
10-6 L L L L )

0 2 4 6 8 10 12 14 16 18 20
SNR/dB

Fig.2 MSE performance of the CFO estimators via real-

coefficient polynomial rooting

107 —a— Fstimator A (complex, 128 x 8)
—=— Estimator A (real,128 x 8)
—a— Estimator A ( complex,64 x 16)
—o— Estimator A (real,64 x 16)

E 5-3k
E 10

10—4_ 1 L ! ! ! ! )

Fig.3 MSE performance of the CFO estimator in Refs.
[8 —9] at low SNR

4 Conclusion

In this paper, we present a simplified CFO estimator via
direct polynomial rooting for MIMO OFDM systems with
properly designed training sequences. We analyze the CFO
estimation via direct polynomial rooting and via derivative
polynomial rooting. Our analytical results show that the two
approaches are equivalent and they are well supported by the
simulation results.
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