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Abstract: To cope with the constraint problem of power
consumption and transmission delay in the virtual backbone of
wireless sensor network, a distributed connected dominating set
(CDS) algorithm with (@, B)-constraints is proposed. Based on
the (a, B)-tree concept, a new connected dominating tree with
bounded transmission delay problem ( CDTT) is defined and a
corresponding algorithm is designed to construct a CDT-tree
which can trade off limited total power and bounded transmission
delay from source to destination nodes. The CDT algorithm
consists of two phases: The first phase constructs a maximum
independent set( MIS) in a unit disk graph model. The second
phase estimates the distance and calculates the transmission power
to construct a spanning tree in an undirected graph with different
weights for MST and SPT, respectively. The theoretical analysis
and simulation results show that the CDT algorithm gives a
correct solution to the CDTT problem and forms a virtual
backbone with (@, 8)-constraints balancing the requirements of
power consumption and transmission delay.
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wireless sensor network inherits the characteristics of

ad hoc wireless networking. Although a wireless ad
hoc sensor network has no physical backbone infrastructure,
a virtual backbone can be formed by nodes in a connected
dominating set (CDS) of a corresponding unit-disk graph
(UDG) .

The connected dominating set of a graph representing a
network has a significant impact on the efficient design of
topology control and routing protocols in wireless sensor
networks. Recent studies”™ in this area have focused on
finding a minimal CDS (MCDS) for higher efficiency and
trying to maintain a certain degree of redundancy in the vir-
tual backbone for fault tolerance and routing flexibility. In
fact, as energy conservation is an important concern, trans-
mission is also very significant for crucial information trans-
port in wireless sensor networks. In the survey'”', many pro-
posed algorithms for constructing a spanning tree to guaran-
tee connectivity and coverage do not pay enough attention to
energy and transmission delay simultaneously. Sensor nodes
in a sensor network have very limited power, so power must
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be used efficiently. The total power consumption of all the
nodes needs to be bounded for energy conservation''. Trans-
mission delay refers to the time for messages to travel across
the network. It is highly dependent on the length of the path
between two communicating nodes. Therefore, to obtain a
small transmission delay between a pair of nodes, it is ex-
pected that the path from the source to the destination should
be as short as possible. However, little research work consid-
ers bounding the total energy consumption and transmission
delays simultaneously for the construction of CDS. Ref. [9]
introduced a («, B) -tree into a broadcast tree to trade off en-
ergy and transmission delay. We construct a connected dom-
inating tree with these two concerns and try to balance them
so that the tree can serve the network better. We give a for-
mal definition of this kind of problem as («, 8) -constraints.
Then we extend it into the connected dominating tree
(CDT) with the bounded transmission delay( CDTT) problem
and give out the solution by constructing a CDT limited total
power while the transmission delays between the source and
all the other nodes are also bounded. With such a tree, the
requirements for energy conservation and transmission delay
are both satisfied. We also propose a distributed CDT algo-
rithm( dCDT) which consists of two phases. In realistic ap-
plication, we may integrate related factors into « or 3 respec-
tively to tune the constraint relationships of power and delay
for a virtual backbone in wireless sensor networks.

1 CDT Problem Formulation
1.1 (a,p)-constraint problem

For CDS, to the best of our knowledge, no other research
work considers bounding the transmission delay and limiting
the total energy consumption simultaneously. We propose a
novel method to solve this problem with the help of an («,
B) -tree which has been introduced into wired networks''”.
As known, it is almost impossible to consider minimizing
the total weight and minimizing the distance from the root to
each node simultaneously using just a minimum spanning
tree (MST) or just a shortest path tree ( SPT), since there is
a trade-off between these two minimization goals. In Ref.
[10], the LAST algorithm is proposed to construct a span-
ning tree that can simultaneously approximate a shortest path
tree and a minimum spanning tree. The motivation is to bal-
ance the minimization purposes of the total link cost and the
cost of a message to be sent from each host to the root of the
tree. In wired networks, energy conservation is not a great
concern. However, in wireless sensor networks, energy is a
cherished resource that all the algorithms and protocols must
take into account. Therefore, the cost in LAST is defined
based on the distance of each neighboring host, while the
cost in our algorithm should be the energy spent to transmit
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and the path length from the sender to the receiver. There-
fore, we have a double weights spanning tree for the CDS.

Thus, « directly correlates with the requirement of total
path length which corresponds to transmission delay and B
represents the requirement of power or energy consumption.
Our purpose is to moderate two objectives such as « and 8
for a spanning tree of CDS, so-called ( «, 8) -constraints.

1.2 CDT problem formulation

We model a virtual backbone in a wireless sensor network
as a general undirected and weighted graph G =(V, E). We
hope to find a tree C spanning G with («, B)-constraints.
The following is a list of notations we use:

d(u,v) or d(e) is the distance or length of an edge E(u,
v) from u to v according to some norm ( we use the Euclide-
an norm).

P, is the power needed to transmit from u to v, which is
equal to the weight from u to v, w(e) or w(u, v),

P =w(e) =w(u,v) =C,d, (1)

v uy

C, is the constant determined by the signal detection
threshold which is related to environments. To transmit a
signal over a distance d, the required radiation energy is
proportional to "', where typically v is 2 and can range up
to 6 in environments with multiple-path interferences or lo-
cal noise.

p(u) is the maximum transmission power for node u in
the spanning tree for a CDS, p(u) =max{p,:(u,v) € G}.

w(T) is the total weight of a spanning tree 7,

w(T) = Y w(e) (2)

eeT

p(T) is the total power consumption of a spanning tree 7,

p(T) = p(u) (3)

ueV

d(G) is the total length of a graph G,

d(G) = zzd( e) (4

We now formally define the connected dominating tree
with a bounded transmission delay problem as follows:

Definition 1 Connected dominating tree with bounded
transmission delay (CDTT) problem in wireless sensor net-
work. Given a subset of nodes in a wireless sensor network,
construct a connected dominating tree ( CDT ) so that
d(CDT) is bounded by a user-specified threshold and
p(CDT) is limited.

In this paper, we introduce ( «, 8) -tree into wireless sensor
networks to solve the CDTT problem in accord with («, 8) -
constraints. It approximately satisfies the power constraint
and the transmission delay constraint by constructing a con-
nected CDT. Based on the definition of the( «, B8)-tree in
wired networks!"”’, we give the definition of a CDT tree in
wireless sensor networks as follows:

Definition 2 For a=1 and 8=1, a spanning tree C of G
meeting the following two requirements is called an («, 8) -
tree rooted at r.

1) Distance: For every vertex u, the distance between r

and u in C is at most « times the shortest distance from r to
u in G.

2) Power: The power of C is at most 8 times the power of
an optimal solution to the CDTT problem.

The weight or cost is defined as the energy needed to
transmit between a pair of nodes in wireless sensor networks
for MST of T and as the distance between a pair of nodes for
SPT of T.

2 CDT Algorithm

We present a CDT algorithm for constructing a CDT tree
C. Given a weighted and connected graph G =(V, E), a root
(sink) node r and an « > 1, the CDT construction algorithm
constructs a CDT tree satisfying the constraints that the total
power of the CDT and path lengths between the root r and
the other nodes are bounded. The transmission power be-
tween pairs of nodes is used as weight to calculate the mini-
mum spanning tree, and the path length between pairs of
nodes is used as weight to calculate the shortest path tree for
the CDT tree. The algorithm is given an « > 1, a minimum
spanning tree, and a shortest path tree rooted at a vertex r. It
returns a CDT tree rooted at r.

The basic idea of the algorithm is to traverse the mini-
mum spanning tree, maintaining a current tree, and checking
each vertex when it is encountered to ensure that the dis-
tance requirement for that vertex is met in the current tree. If
it is not met, the edges of the shortest path between the ver-
tex and the root are added into the current tree. Other edges
are discarded so that a tree structure is maintained.

After all vertices have been checked and all paths added
as necessary, the remaining tree is the desired CDT tree. The
final tree is not too heavy because a shortest path is only
added if the path that it replaces is heavier by a factor of «
> 1. This allows a charging argument bounding the net
weight of the added paths.

The general procedure of the CDT algorithm is as fol-
lows: First, it constructs an MST 7. T is rooted at r where
there exists a path from 7 to every other node. Then, based
on the connectivity information of the network, the CDT al-
gorithm constructs an SPT H. H includes all the shortest
paths from r to every other node. Next, T will be traversed in
a depth-first manner. When visiting a node u, if the length of
the path from r to u in T is larger than a user-defined thresh-
old «, then this path is replaced by the path from r to u in
H. After the CDT algorithm ends, the CDTT problem is
solved.

We use Dijkstra’s algorithm to construct an SPT H. H in-
cludes all the shortest paths from the root r to all the other
nodes. To construct and maintain the CDT C, each node u
needs to have a parent pointer p[u] and an upper bound
d[u] on the distance from node u to the root r. Let D, (u,
v) denote the length of the path from u to v. We use the
INITIALIZE and RELAX algorithms in Ref. [10] to initial-
ize and maintain both of these attributes.

The CDT algorithm then traverses the MST T in a depth-
first manner beginning from the root r along the paths from
r to all the other nodes. This is possible since, when con-
structing C, each node u’s parent and children have already
been recorded. When node u is reached for the first time, if
d[u] is greater than aDg,,(r, u), then the shortest P, in H is
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added to C and d[ u] and p[ u] are updated. After this, node
u’s parent v needs to be checked if the updated path from r
to u will result in shortening the path from r to v. If so, then
v’s parent will be checked and so on until the root r is
reached. The CDT algorithm is given in the following:

Algorithm CDT
INITIALIZE(G, r) {
for each vertex ve V do
d[v] <o
plu] < nil
end for
dlir] <0}
RELAX(u, v){
if d[v] >d[u] + wg(u, v) then
dlv] =dlu] +wg(u, v)
plv] «u
end if}
ADD-PATH(v) {
if d[v] > D (7, v) and parentg, (v)! =nil then
ADD-PATH( parent,.(v))
RELAX( parentg,.(v), v)
end if}
DFS(u) {
if dlu] > aDg(r, u) then
ADD-PATH( u)
end if
for each child v of u in MST do
RELAX(u, v)
DFS(v)
RELAX(v, u)
end for}
CDT(MST, SPT, r, o) {
INITIALIZE(MST, r)
DFS(r)
return CDT C}

The CDT C is the desired tree satisfying the constraints
that both p(C) and d(C) are bounded.

To better understand the CDT algorithm, a sample execu-
tion is illustrated in Fig. 1. Fig. 1(a)is the undirected graph.
Fig. 1(b)is the connectivity information of a network where
the number on each edge denotes the physical distance be-
tween a pair of nodes. Fig. 1(c)is the weighted graph after
considering the transmission power of each node. The shor-
test path tree H is given in Fig. 1(d)and the MST T is illus-
trated in Fig. 1(e). Suppose that 1 is the root and o =2. T is
first traversed. When visiting 4, the length of the path (1,2,
3,4)in Tis d,(1,4) =23, and the length of the path (1,4)
in SPT His d,,(1,4) =11, therefore, d,(1,4) =23 > ad, (1,
4) =11. Thus, edge(1,4)is added and P[ u] is changed from
3 to 1. Note that edge (3, 4) is not deleted( represented as
dotted line) since we need to go back along edge(3,4)to re-
trieve 4’s original parent 3 to check if the new added path
(edge(1,4)) also shortens the path from 1 to 3. In this ex-
ample, the path from 1 to 3 will not be replaced. This back-
ward check of a node’s original parent happens whenever the
path to this node is replaced. Finally, a CDT tree C is ob-
tained after traversing T, as shown in Fig. 1(f). The number
in the brackets represents the physical distance of a pair of

nodes; otherwise, the numbers represent the weight of this
edge.
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Fig.1 A sample execution of the CDT algorithm

Next, let us check the trade-off ability of the CDT algo-
rithm. We calculate the total power and the total length for
MST, CDT and SPT, respectively, as shown in Fig. 1.

p(MST) =345,
d(MST) =91,

p(CDT) =402,
d(CDT) =63,

p(SPT) =446
d(SPT) =54

Obviously, we can conclude the above as

p(MST) < p(CDT) <p(SPT)
d(MST) >d(CDT) >d(SPT)

It shows that the CDT algorithm does well and complies
with our expectations.

3 Distributed CDT Algorithm

Our distributed algorithm for construction of CDS with
(«a, B) -constraints consists of two phases. These two phases
construct a maximal independent set( MIS) based on a unit
disk graph, and a connected dominating tree based on a gen-
eral undirected graph''", respectively.

3.1 Distributed construction of MIS

By definition, any pair of nodes in an MIS are separated
by at least two hops. However, a subset of nodes in an MIS
may be three hops away from the subset of the remaining
nodes in this MIS. The MIS constructed in this section guar-
antees that the distance between any pair of its complemen-
tary subsets is exactly two hops. Our construction uses a
carefully chosen rank definition. The ranking is induced by
an arbitrary rooted spanning tree 7, which can be constructed
by the distributed leader-election algorithm in Ref. [ 12]
with O(n) time complexity and O( nlogn) message com-
plexity. Given a rooted spanning tree 7, the( tree) level of a
node is the number of hops in T between itself and the root
of T. (Thus the level of the root is 0. ) The rank of a node
is then given by the ordered pair of its level and its ID. Such
ranking gives rise to a total ordering of the nodes in a lexi-
cographic order. The following distributed process''' enables
each node to calculate its own rank and the number of low-
er-ranked neighbors.
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Each node maintains two local metering variables, neib
and child. The variable neib counts the number of neighbors
whose levels have not yet been identified and is thus initial-
ized to the number of neighbors. The variable child counts
the number of children who have not yet reported the com-
pletion and is thus initialized to the number of children.
Each node also maintains a levellist that records the levels of
its neighbors and is initially empty, and a local variable Ineib
stores the number of lower-ranked neighbors. After the root-
ed spanning tree T is constructed, the root announces its lev-
el 0 by broadcasting a LEVEL message.

Upon receiving a LEVEL message, a node appends an en-
try consisting of the sender’s ID and level to levellist and
then decreases neib by 1. If the sender is its parent in T, it
sets its own level to one plus the sender’s level, and then an-
nounces this level by broadcasting a LEVEL message. If
neib =0, it sets Ineib to the number of lower-ranked neigh-
bors which can be calculated from levellist. If it is a leaf in T
(i.e. child =0 initially) and its own level has been deter-
mined, it transmits an L _ Complete message to its parent.
Upon receiving an L _ Complete message towards itself, a
node decreases child by 1;if child =0 after the update and it
is not the root, a node transmits an L _ Complete message to
its parent and then resets child to the number of children.
When the local variable child =0 at the root, the root simply
resets child to the number of children. By this time, all nodes
know their own ranks and all its neighbors and thus the root
moves onto the construction of the MIS by a color-marking
process.

All nodes are marked with white color initially and are
marked with either gray or black eventually. Each node also
maintains a blacklist which records the IDs of its black
neighbors. Note that the blacklist can contain at most five
black nodes. The root first marks itself black and broadcasts
a BLACK message. Upon receiving a BLACK message, a
node adds the sender’s ID to the blacklist, and if its color is
still white, it marks itself gray and broadcasts a GRAY mes-
sage which contains its level. Upon receiving a GRAY mes-
sage, if the rank of the sender is lower than its own, a white
node decreases [neib by 1; if Ineib = 0 after the update, it
marks itself black and broadcasts a BLACK message. When
a leaf node is marked with either gray or black, it transmits
an M _ Complete message to its parent. Upon receiving an
M _Complete message towards itself, a node decreases child
by 1;if child =0 after the update and it is not the root, a
node transmits an M _Complete message to its parent. By the
time the local variable child =0 at the root, all nodes will
have been marked with either gray or black and thus the root
will move onto the construction of the CDS.

3.2 Distributed CDT algorithm

We introduce the distributed CDT algorithm which is exe-
cuted at every node in a general undirected graph. Three ex-
isting distributed algorithms dMST!*, dSPT'"", and
dDFS'"" are executed to obtain an SPT, an MST, and a DFS
traversal order. All of these algorithms are initiated and ter-
minated by a Manager. The Manager can be the root node.
Then, a CDS with( «, ) -constraints is constructed in a dis-
tributed manner. During the construction of a CDS, we in-
clude message ADD _FINISH and a field initiator for some

messages for the purpose of synchronization. Nodes commu-
nicate with each other through exchanging the following
messages'*' :

WAKEUP: If node u sends this message to node v, this in-
dicates that u has been visited in the DFS order and v be-
comes the current being visited node.

ADD: If node u sends this message to node v, this indi-
cates that the path from r to u in the SPT will be added and
u is telling its parent v in the SPT this fact. This message
should record u as the initiator of this ADD-PATH opera-
tion.

ADD _FINISH: This message is initiated by the root r af-
ter it receives an ADD-PATH request and this message is
transferred by all the nodes on the being added path. Note
that since each ADD message has an initiator, the ADD _
FINISH message also needs to have an initiator which is the
same as the one in the corresponding ADD message.

UPDATE: If node u sends this message to node v, this in-
dicates that edge(u, v) needs to be RELAXed.

To construct a CDS, the dSPT'', dMST'', and dDFS'"'
are executed at each node first. Since the initiation and ter-
mination of each distributed algorithm is conducted by the
root r, all the nodes in the network can be synchronized and
these algorithms can be employed in a serialized distributed
fashion. A DFS traverse is first conducted on the MST T ac-
cording to the order obtained in the dDFS procedure. Each
node u uses d[ u] to record the current distance between the
root r and itself and uses P[u] to record its parent in the de-
sired CDS. Initially, d[u] is set to d,(r, u) for each node
u. The root r initiates this traverse by sending out a WAKE-
UP message to its successor in the order obtained from the
dDFS.

The algorithm terminates after the root r receives an UP-
DATE message with initiator u, which is marked as the last
node in the order obtained from the dDFS.

4 Analysis and Simulation
4.1 Analysis

First, we evaluate the correctness of the CDT algorithm by
examining if the two constraints in definition 2 are satisfied.
« is a user-defined input and 8 is related to «. We derive a
relationship between « and B so that the relationship between
the powers of the constructed CDT and the optimal solution
to the CDTT problem can be obtained.

We employ the CDT algorithm in a graph G =(V, E) to
construct a CDT. For Eq. (1), we set y to2 and C, to 1 for
every node v. We define p(opt) to be the total power con-
sumption of an optimal solution opt to the CDTT problem in
G. Let T, be the tree rooted at root r of opt.

Lemma 1 The distance between r and v in H is at most
« times the shortest path distance from r to v in G.

Proof During the construction of 7, for each node v, if
d[v] exceeds o times the distance in the SPT H, then the
shortest path between r and v is added to replace the old one
by calling ADD-PATH. In any case, after v is visited, d[v]
is at most « times the shortest path distance and subsequent-
ly never increases. This added shortest path will never be re-
placed by other paths. On termination it bounds the distance
in H.
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Lemma 2 Given an SPT H and an MST 7, the trans-

2

) times the MST

mission power of H is at most( I
a -

weight.
2

Proof As proven in Ref. [10], d( H) S( |
a—

)dm

p(H) = w(H) =d'(H) < (%) (1) =

2
(=2) w (5)
a —

Lemma3 w(T7,,) <A p(opt), where A is the maxi-
mum node degree in G.

Proof For each node u on the tree rooted at the root,
z w(u,v) <A-p,, thusw (T,)<A-p(opt).
(u,v)eE

Theorem 1 Let C be the CDT tree constructed by the

CDT algorithm, then p( C) < ( 1+ (Ll) )A-p( opt) .
a -
Proof Let H be an SPT and T be an MST rooted at the
root. From lemma 2, lemma 3 and the definition of CDT,

we have
p(C) = w(C) s w(T) +w(H) <
e =1+

2
(1 +(a2_1

(2o

2w <

In the following, we analyze the message complexity and
time complexity of the distributed algorithm.

Theorem 2 The time complexity of the dCDT algorithm
is O(n’) and the message complexity of the dCDT algo-
rithm is O(n%).

Proof The dCDT is executed at each node simultaneous-
ly. The execution time is thus dominated by the ADD-PATH
procedure. The ADD-PATH function executes RELAX at
most once and the execution time for the function RELAX is
O(1). Therefore, the execution time of the function ADD-
PATH is proportional to the number of relaxed edges. The
worst case is that the longest path of length O(n) in a net-
work needs to be added. Thus, the execution time of the
function ADD-PATH is O(n). Since the time complexities
of dSPT, dMST, and dDFS are all O(n’), the time complex-
ity of dCDT is O(n’).

In each of the above operations, each node sends a certain
message to just one node. The WAKEUP messages are sent
twice at each node. The ADD, ADD _ FINISH, and UPDATE
messages may be sent up to O(n) times. Thus, the message
complexity of dCDT is O(n*).

4.2 Simulation

We evaluate its performance by conducting simulations in
NS2 to measure the total power and the transmission delays
of the constructed CDT, SPT and MST. We conduct the sim-
ulations for the networks sized from 20 to 300 nodes. All
these networks are randomly generated in a fixed 1 km X
1 km region. For each edge e = (u, v), we set its weight w
=C,d! , where d,, is the Euclidean distance between u and
v, and vy is fixed to 2, which is a typical value for an unob-

uv

structed environment, and C, is a random constant. For all
the simulations, we compare the results of the dMST algo-
rithm, the dCDT algorithm, and the dSPT algorithm.

In order to evaluate 8 that reflects the total power con-
sumption, we compare the total powers of a CDT, an MST,
and an SPT. Thus, the total power is the sum of each node’s
maximum transmission power. In this simulation, « is set to
2. The results are shown in Fig. 2.

——CDT
9 —a—MST
—— SPT
N—l-.—l—.‘".
-
20 60 100 140 180 220 260 300
Network size

Fig.2 Total power

From this simulation, it can be seen that the CDT has less
total power consumption than the SPT does. The reason is
that, for a node u, the CDT only adds the path from u to r in
the SPT under the condition that the weight of the path from
u to r in the MST is greater than two times the weight of the
one in the SPT. This limits the total power consumption and
complies with our expectations. Another observation is that,
as the size of the network increases, the total power con-
sumption does not increase much. This is because, as more
and more nodes are employed into the fixed area, two neigh-
bouring nodes are getting closer. Therefore, the total power
consumption does not increase much.

Since transmission delay is highly related to the length of
each path that messages traverse, the total length of the
paths in the constructed tree is calculated to evaluate it. In
this simulation, o is set to 2. Fig. 3 compares the total
lengths of all the paths from the root to every other node and
also the paths from each node to the root in each tree con-
structed by the MST algorithm, the CDT algorithm, and the
SPT algorithm. It is shown that, for all the networks, the tree
constructed only by the SPT has the smallest total length.
This result coordinates with our example in Fig. 1.

From Fig. 2 and Fig. 3, the CDT has shown the ability to
balance the advantages and shortcomings of MST and SPT.
This satisfies the requirements of the CDTT problem to
bound both the total power consumption and the transmis-
sion delays.

60 100 140 180 220 260 300
Network size
Fig.3 Total path length( transmission delay)

5 Conclusion

In order to construct a CDS with bounded total energy
consumption and transmission delay, we propose ( «, 8) -con-
straints derived from an («, B)-tree, to solve the CDTT
problem. At the same time, the distributed version of the
CDT algorithm is also presented. Both the theoretical analy-
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sis and simulations show that our method can satisfy the
constraints of bounded total power and transmission delay.
The CDT problem studies how to construct a CDT tree for
one source node. We will investigate more deeply the CDT
tree construction when multiple sources are presented and
further extend the constraint problem from undirected graphs
to directed and weighted graphs.
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