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Abstract: Some metamorphic relations ( MR) are not good at
detecting faults in metamorphic testing. In this paper, the method
of making compositional MR (CMR) based on the speculative
law of proposition logic is presented. This method constructs new
MRs by composing existing MRs in a pairwise way. Because
CMR contains all the advantages of the MRs that form it, its
fault detection performance is wonderful. On the other hand, the
number of relations will decrease greatly after composing, so a
program can be tested with much fewer test cases when CMRs
are used. In order to research the characteristics of a CMR, two
case studies are analyzed. The experimental results show that the
CMR’s performance is mostly determined by the central MRs
forming it and the sequence of composition. Testing efficiency is
improved greatly when CMRs are used.
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oftware testing can be used for finding and correcting
S errors in software. But sometimes, there are oracle prob-
lems'" in testing; that is, it is difficult to decide whether the
results of the program under testing agrees with the expected
results. To solve this problem, Chen presented metamorphic
testing( MT) "' This method tests software by checking rela-
tions among execution results, and does not call for expected
outputs.

There are two prominent traits for MT: 1) To check execu-
tion results, metamorphic relations ( MR) 1 should be con-
structed; 2) To attain original test cases’, MT should be
used with other test case generating methods.

Chen et al. reported on the MT of programs for solving
partial differential equations"; Gotlieb et al. developed an
automated framework to check against a restricted class of
MRs''; Zhou et al. introduced ways to design MRs for non-
numerical problems'; Tse et al. applied a metamorphic ap-
proach to the unit testing' and integration testing'”’ of con-
text-sensitive middleware-based applications; MT has also
been used in testing SOA software™™; Chen et al. intro-
duced how to select useful MRs by a case study'”; Chen et
al. investigated the integration of MT with global symbolic
evaluation'"! and fault-based testing!"*'; Wu et al. gave the
evaluation and comparison of special case testing, MT with
special and random test cases'”’, and put forward an itera-
tive MT technique''*'. These researches validate that MT is
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good for solving oracle problems, but most of them only
consider a program’s function, so blindness is hard to avoid.
In this paper, we provide the definition of CMR ( compo-
sitional MR) based on the speculative law of proposition log-
ic, and prove that these new relations are useful for fault de-
tection by two case studies, SpMatMul and TriSquare. Some
conclusions for CMR construction are also presented.

1 Concepts

Definition 1 ( metamorphic relation)  Suppose that pro-
gram P computes function f, which is also referred to as the
specification that P must accord with. Let x,, x,, ..., x, (n >
1) be n different inputs of function f, if their satisfaction of
relation r implies that their corresponding outputs f(x,),
f(x,), ..., f(x,) satisfy relation r,, that is

X)) =), (), .. fx,)) (1)

(X, Xy, ..

then (7, r,) is a metamorphic relation of f. Because P is an
implementation of f, if P is correct, it should also satisfy this
relation, that is

r(1, L, ....,1)=r(P(1,), P(L,), ..., P(1)) (2)

where I, I,, ..., I, are inputs of P that associate with x, x,,

L x,,and P(I)),P(l,), ..., P(1,) are their outputs. So (r,
r;) is also an MR of P. When we test P with (r, r,), the test
cases originally given are original test cases (OTC), others
which are deduced from relation r are follow-up test cases
(FTC).

Definition 2( compositional MR)  Let (r,, r,), (7,, 1),
e (rq, rfq)be g MRs of program P, where

r(I, L, ..., 1) =r,(P(1), P(L), ..., P(I,)))
n(LL L, . L) =r,(P(L), P(L), ..., P(L,))

r (I L o 1) =7 (PO, P(L), ..oy P(IZ))

cer Ay

We first select two relations, (r,, ;) and (r;, r;). Accord-
ing to the speculative law of proposition logic, the following
formula can be deduced:

[r(L Lo 1) Ary(BL B B =
[r,(P(1), P(L), ... P(1,)) \

r(P(1), P(L), ..., P(1,))] (3)
If expression (3) can be evolved to

Pemp(Lis s o L) = iy (PCL) s PCL) oy P(Ly))

(4)
by techniques such as variable replacement, equivalent trans-

formation, and so on, then the next composition is done with
(7\emp> Triemp) @nd another MR that has not been selected. Re-
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peat this pairwise composition (g — 1) times. If we can get
an MR, (r_, r,.) finally, where

rdly, by o 1) = (PCL), P(L), o, PXL)) - (5)

then (r,, r,) is a compositional MR for all ¢ MRs.
For example, Square( double, double) is a program for
calculating rectangular squares:
double Square(double a, double b) {
return a * b;
}

We construct two MRS, (7, r,) and (r,, r,) for it, where
ryis [(a',b") =(b,a)], r, is [Square(a’, b') = Square(a,
b)],ryis [(a’,b") =(2a,2b)], and r, is [ Square(a’, b') =
4 x Square(a, b)]. It is obvious that

[(a,, by) =(b,,a)] Nl(a,, b)) =(2a,2D)]=
[ Square(a,, b,) =Square(a,, b,)] N\
[ Square(a,, b,) =4 x Square(a, b) ]

After deducing, we get a CMR, (r,, ;) of mr, and mr,,
where r_is [(a,, b.) =(2b,2a)], and r,_ is [ Square(a_, b,)
=4 x Square(a, b)].

Definition 3 ( mutation score Quality measurement
of a test suite TC, which is the percentage of mutants detec-
ted, MS for short:

)1131

k
MS(TC) = m
where M, is the number of mutants detected by the TC, M,
the total number of mutants, and M . the number of equiva-
lent mutants that cannot be detected by any set of test data.
Definition 4 (fault detection ratio) '’  The percentage of
test cases that can detect certain mutant m, FD for short:

FD(m, TC) N
" - N, t N, e
where N, is the number of times a program under a test
fails, N, the number of tests, and N, the number of infeasible
tests.

2 Case Studies

SpMatMul is a program for calculating multiplication of
two sparse matrices, and TriSquare for computing triangle
squares. MT is suitable for both of them.

2.1 Sparse matrix multiplication

The first case study is on SpMatMul which calculates the
multiplication of two sparse matrices, whose code is as fol-
lows:

void SpMatMul(int n, int m,
const double “a, const int “ia, const int "ja,
const double *b, const int *ib, const int " jb,
double “c,int “ic,int "jc){
int nz =0, "mask, i, j, k, icol, icol _add,;
const double *aij = a;
const int * neighbour = ja;
1
2 mask = (int ") malloc(m * sizeof(int));

3 for(i=0;i<m;i+ +) mask[i] = - 1;
4 ic[0] =0;

5for(i=0;i<n;i+ +){

6 for(j=ial[i];j<ia[i+1];j+ +){
7  for(k =ib[ "neighbour]; k <ib[( "neighbour) +1]; k +
+){

8 icol _add =jb[k];

9 icol = mask[icol _add];

10 if(icol = = - 1){

11 je[nz] =icol _add;

12 c[nz] = (" aij) = b[k];

13 mask[icol _add] =nz;

14 nz+ +;

15 }

16 else

17 clicol] + =( " aij) * b[k];
18 }

19 aij + +;

20 neighbour + +;

21}

22 for(j=icl[i];j<nz;j+ +)mask[jc[j]] = -1;
23 icl[i+1] =nz;

24 }

25 free( mask);

26 }

This program has been described detailedly in Ref. [13],
and five mutants'"” are designed for it:

Mutant 1: Delete line 19;

Mutant 2: Replace line 12 with “c

Mutant 3: Replace line 12 with “c

Mutant 4: Replace line 17 with “c[icol] + = ( " aij)”;

Mutant 5: Replace line 17 with “c[icol] + =b[k]”.

Here, we only consider nine MRs (MR, to MR, in Tab.
1) and eight special cases (SC, to SC, in Tab.2)as OTCs.

nz] =( " aij)”;
nz] =b[k]”;

Tab.1 Nine MRs for SpMatMul'"”’

MR, R R,

MR, A"=B",B'=A" A'B'=(AB)"
MR, A'"=PA,B'=B A'B' =P(AB)
MR, A'=A,B' =PB A'B' =(AB)P
MR, A'=QA,B' =B A'B’ = Q(AB)
MR, A'=A,B'=0B A'B' =(AB)Q
MR, A'=cA,B' =B A'B' = c(AB)
MR, A'=A,B' =B A'B’ = c(AB)
MR, A'=A+I1,B' =B A'B'=AB +IB
MR, A'=A,B' =B+1 A'B'=Al +AB

Notes: P is obtained by exchanging two rows of the identity matrix 1. Q is
obtained by multiplying a principal diagonal element I with a scalar a. ¢ is a
scalar.

Tab.2 Special cases for SpMatMul'"”’

SC; A:[aij]nxr’B:[bi/]rxm C:AB:[cij]nxrlx
SC, A=0 0
SC, B=0 0
SC, A=1 B
SC, B=1I A
1 i=j=1
SC = L= =b .
3 n=la {0 otherwise €y = On
1 i=j=1
SC = L= =a,
° m=1,b; {0 otherwise Cip = Gim
SC, r=1,a;=1 c;j=b,
SCq r=1,b;=1 Cy =4,

As Tab. 3 in Ref. [13] shows: 1) Mutant 4 and 5 cannot
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be detected no matter what MR is used;2) Most of the fault
detection ratio ( FD) values for mutant 1, 2 and 3 are not
more than 75% ;3) None of the five mutants can be discov-
ered with MR;. These results indicate that testing SpMatMul
with SC, _; and MR, _, is not effective, and some test cases
are useless.

2.2 Triangle square calculation

The second case study is TriSquare. Its code is listed as
follows:

double TriSquare(int a, int b, int c¢) {
1 int match =0;

Pl if(a = =b)

2 match = match + 1;

P2 if(a= =c¢)

3 match = match +2;

P3 if(b= =c¢)

4 match = match +3;

P4 if(match = =0) {/ = if a, b and ¢ are not equal to each
other * /

P5 if(a+b< =c¢){

5 System. out. println( “Not a triangle”) ;
6 return 0. 0;
P6 }elseif(b+c< =a){
7 System. out. println( “Not a triangle”);
8 return 0. 0;
P7 }elseif(a+c< =b){
9 System. out. println( “Not a triangle”);
10 return 0. 0;

} else {
11 double p=(a+b+c¢)/2.0;
12 System. out. println( “Scalene”) ;
13 return sqrt(p * (p —a) * (p—-b) *(p—c));/ *
compute square * /

}

P8} else if(match= =1){/ % if(a=b # ¢) %/
P9 if(a+b< =¢){

14 System. out. println( “Not a triangle”) ;
15 return 0. 0;
} else {
16 double & = sqrt(pow(a,2) —pow(c/2.0,2));
17 System. out. println( “Isosceles”) ;
18 return(c * h)/2.0;/ * compute square * /

}
P10} else if(match = =2){/ * if(a=c # b) =/
P11  if(a+c < =b){

19 System. out. println( “Not a triangle”);
20 return 0. 0;
} else {
21 double A = sqrt( pow(a,2) —pow(b/2.0,2));
22 System. out. println( “Isosceles”) ;
23 return(b * h)/2.0;/ % compute square * /
}

P12} else if(match = =3) {/ % if(b=c#a) %/
P13 if(b+c< =a)

24 System. out. println( “Not a triangle. ) ;
25 return 0. O;
} else {
26 double & = sqrt(pow( b, 2) —pow(a/2.0,2));

27 System. out. println( “Isosceles”) ;
28 return(a * h)/2.0;/ * compute square * /
}

}else {/* if(a=b=c) x/
29 System. out. println( “Equilateral”) ;
30 return(sqrt(3.0) * a * a)/4.0;/ * compute square
*/

}
}

This program first decides whether three positive real
numbers, a, b and ¢ can form a triangle. If so, type and
square of this triangle are calculated.

We construct seven MRs for TriSquare, and details are
shown in Tab. 3. Among them, mr; is constructed based on
parallelogram characteristics. In Fig. 1, it is obvious that OD
= OB = b, so the squares of triangle ODC and OBC are e-
quivalent to each other; that is, TriSquare( a, b, ¢) = TriS-
quare(k, b, ¢). Because |BD|* + |AC|* = |AB|* + | BC|?

+|CDIP+ |DA, k= /2 +2¢° —az.mr&7 are construc-

ted in the same way.

Tab.3 Seven MRs for TriSquare

MR r Ty
mr, (a'=b,b"=a,c'"=c¢)
mr, (a'=a,b" =c,c' =b) For mr, , 5567

TriSquare(a’, b’, ¢")

mrs (a'=c,b'=b.c'=a) = TriSquare(a, b, ) ;

mr, (a' =2a,b' =2b, ¢’ =2c¢)

mrs o (q'= /26" +2¢ —d’ b =b, ¢ =¢)
mrg (a'=a,b' = m,c’:c)
mr, (a'=a,b' =b,c' = /m)

For mr,,
TriSquare(a’, b', ¢")
=4 x
TriSquare(a, b, ¢)

) a ¢
Fig.1 Principle of mr;

Obviously, when a, b and ¢ can form a triangle, that is,
when Gres is true, where Gres = (a >0) A(b>0) A (¢ >0)
ANla+b>c) N(a+c>b) N(b +c>a),it is effective to
test TriSquare with MT. And test cases for it can be divided
into five categories using equivalent partition, as Tab. 4 il-
lustrates.

Tab.4 Five case types for TriSquare

Type Restrictions

Tril (a#b#c#a) /\ Gres
Tri2 (a=b#c) N\Gres
Tri3 (a=c#b) N\ Gres
Tri4 (b =c#a) N\ Gres
Tri5 a=b=c>0

Here, we also use a mutation analysis technique'"”’ to esti-
mate test suites and MRs. Four mutants are imported based
on two types of mutation operators, AOR (arithmetic opera-
tor replacement) and DSA( data statement alterations) (st

Mutant 1: Exchange sentence 2 and 3;
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Mutant 2: Replace sentence 11 with “p =(a + b +¢) *
27

Mutant 3: Replace “/2” in 18,23 and 28 with “ % 2”;

Mutant 4: Replace sentence 30 with “return sqrt(3) * a *
a’2”.

Testing results are given in Tab. 5. Numbers in the second
column represent the mutants that corresponding types of in-
puts can arouse. For example, the number “2” in the first
row indicates that the sentence including mutant 2 will be
executed when TriSquare is run with an input of type Tril.
Other numbers denote the mutants that relevant types of
OTC and MRs can detect. Obviously, mr, ; can only discover
mutant 1, while mr, , can discover none. But mr  , perform
better, and their FTCs can also detect mutants.

Tab.5 Testing results for TriSquare

Tri Mutant mr, mr, mr; mr, mr; mr, mr,
Tril 2 2 2 2
Tri2 1,3 1 1,2,3 1,2,3

Tri3 1,3 1 1,2,3 1,2,3
Tri4 3 1 1 2,3 2,3
Tri5 4 3,4 3,4 3,4

3 Testing with Compositional MRs

Although MT is effective in solving oracle problems,
some MRs with poor performance are often built during tes-
ting, such as mr, , in case study 2. In this section, we discuss
the construction of CMRs to improve testing efficiency.

3.1 CMRs for SpMatMul

For SpMatMul, MR, and MR,, MR, and MR, MR and
MR,, and MR and MR, are symmetricm], so we divide the
9 MRs into 5 groups, MR,, MR,,, MR,;, MR, and
MR ,. In each of the last four groups of MRs, the first rela-
tion makes some primary transformation on matrix A, while
the second does so on matrix B. We build CMRs for SpMat-
Mul on three angles: 1) A new CMR is composed of MRs
selected from each group, and it makes one matrix of the
OTC change as great as possible, and the other as small as
possible; 2) A new CMR is composed of MRs selected from
each group, and it makes the OTC’s two matrices change to
a similar extent;3) A new CMR can make some of its FTCs
from SC, _; execute the sentence including mutants 4 and 5
(line 17 in code).

As to 3), we should analyze the structure of SpMatMul
first. Suppose matrix C =[c¢,],,,, is the multiplication of two
matrices, A =[a,],,, and B=[b,],,,. Each element of C,
c;y, 18 obtained by multiplying a row of A, a = {a,,, a,,,
...,a, } and a column of B, b = (b, bys ooy brj,}T. A non-
zero pair, (a,,, b)) is a pair of elements, and neither a,, nor
bxj, is 0. If there are at least two non-zero pairs in @ and b,
the sentence including mutant 4 and mutant 5 will be execu-
ted, and these two mutants might be detected. Testing with
SC, ¢ and their FTCs upon MR, , does not satisfy this de-
mand.

Six CMRs(CMRs, ) are constructed for SpMatMul, as
Tab. 6 shows. When these relations are mentioned, CMRs, ,

respond to angle 1), CMRs, , to angle 2), and CMRs; , to
angle 3). The second column of Tab. 6 gives the composi-
tion order of selected MRs.

Tab.6 CMRs for SpMatMul
CMRs MRs r Ty

CMRs, 1,2,4,6,8 A'=B"B’'=c[PQ(A+I)]"
CMRs, 1,3,5,7,9 A'=c[(B+I)QP]" B’ =A"
CMRs; 1,2,5,6,9 A'=Q(B+I)"B'=cA"P
CMRs, 1,3,4,7,8 A'=cPB"B'=(A+D"Q
CMRs; 1,8,2,4 A'=B"B' =(PQA +D)"

CMRs, 1,9,3,5 A'=(BQP+I)" B' =A"

A'B'=c[(AB)" +(IB)"]1 QP
A'B’ =cPQ[(AB)" +(AD"]
A'B' =cQ[(AB)" + (AP
A'B'=cP[(AB)" +(IB)"1Q
A'B'=(AB)"QP + (IB)"
A'B'=PQ(AB)" +(AD"

These new CMRs are formed based on the technique of
equivalent transformation. For example, CMRs, is composed
of MR, , , 4, which are

MR,  R:A” =(BY)"BY =(A")"
R:A”B” =(A“B)"

MR,  R:A" =pA" BY =B"
R:A“B" =P(A”B")

MR, R:A” =QA” B =B"
R:A”BY =Q(A”B?)

MR, R:A® =cA" B® =A"
R:A”B” =c(A"B")

MR R:AY =A+IB" =B

8

R:A""B" =AB +IB

We do pairwise composition on them in turn. First, A”
and B" in MR, are replaced by the equivalent expression of
A" and B"” in MR,, and we obtain a temporary CMR:
R:A(S) — (B(3))TB(5) — (PA(3))T
R:A”B” =[P(AYB?)]"

CMR,

Then, CMR, and MR, are composed. After four times of
composition, CMRs, is built. Because SC; is not applicable
for MR,, A and B’ should not be this kind of matrices.
Among SC, _,, SC; is not applicable for CMRs, .

To obtain the general trait of CMRs, , we test each pro-
gram with a mutant 20 times, and use CMRs, , and SC, _,
each time. The results are given in Tab. 7. “m/¢” at the cross
of SC, and CMRs; means that in 20 testings with SC, and
CMRs;, mutant m can be discovered ¢ times, and “—”
means that SC, is not applicable for CMRs;.

We use the measurement criteria, mutation score( MS) and
fault detection ratio( FD) to estimate the test suite here. As
Tab. 8 shows, almost all FD values for mutants 1, 2, 3 are
75% , and the MS value for CMRs; , is 1, that is, CMRs; ,
can find all 5 mutants with SC, ;. On the other hand, mu-
tant] cannot be detected by SC, upon MR, _,( shown in Tab.
3(a) in Ref. [13]), but it can upon CMRs, , ;. All the facts
indicate that CMRs, . are more effective than MR, .
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Tab.7 Testing results for SpMatMul with CMRs, _¢

sC CMRs, CMRs, CMRs, CMRs, CMRs, CMRs;
SC, 1/20 2/20 3/20 1/20 2/16 3/20 1/20 3/20

SC, 1/19 2/20 3/20 1/15 2/20 3/17 2/20

SC, 1/20 2/20 3/20 1/20 2/20 3/20 1/20 2/20 3/20 1/20 2/20 3/20  1/20 2/20 3/20 4/6 5/17 1/20 2/20 3/20

sC, 1/20 2/20 3/20 1/20 2/20 3/20 1/20 2/20 3/20 1/20 2/20 3/20 1/202/203/20  1/20 2/20 3/20 4/17 5/7
SCs — 1/17 2/20 3/20 — 1/18 2/20 3/20 — 1/18 2/20 3/20

SCq 1/14 2/20 3/18 — 1/16 2/16 3/19 — 1/14 2/19 3/16 —

sC, 1/11 2/20 3/20 1/18 2/20 3/20 1/15 2/20 3/20 1/10 2/20 3/20 1/12 2/20 3/20 1/17 2/20 3/20

SCq 1/20 2/20 3/20 1/20 2/20 3/20 1/20 2/20 3/20 1/20 2/20 3/20 1/20 2/20 3/20 1/20 2/20 3/20

Tab.8 MS and FD values of testing with CMRs, _

CMRs Mutant/ % M MS(T)
1 2 3 4 5 .

CMRSs, 75 75 75 0 0 3 0.6
CMRs, 75 75 75 0 0 3 0.6
CMRs,4 75 75 75 0 0 3 0.6
CMRs, 75 75 75 0 0 3 0.6
CMRs; 75 62.5 75 25 25 5 1
CMRs¢ 62.5 75 62.5 25 25 5 1

3.2 CMRs for TriSquare

According to their structural characteristics, TriSquare’s sev-
en MRs can be partitioned into three groups: mr, , ,, mr; . , and
mr,. When constructing CMRs, we focus on two aspects:

1) New CMR is composed by MRs selected from each

group, and more than one MR is chosen from mr, , ;;

2) New CMR is composed by MRs selected from each
group, and more than one MR is chosen from mr,; .

We also form six CMRs (CMRt, () for TriSquare, as
Tab. 9 shows. Among them, CMRt, ,, respond to aspect
1), while CMRt,  ( respond to aspect 2).

Tab.9 CMRs for TriSquare

CMRt MRs r s

CMRy, 4,2,1,5 (a' =2b,b" =2¢,¢' =2 V/2b* +2% - d?)

CMR¢, 4.3,2,6 (a'=2 V2a +2* -b*,b' =2¢,c' =2a)

CMRt, 4,1,3,7 (a' =2b,b' =2 V2d% +2b% =2, ¢’ =2a) TriSquare_ (a',b',c")
=4 x TriSquare (a,

CMRy, 4,3,6,5 (a'=2¢,b" =2 /3b* +6* —=2d%,¢' =2 /2B +2¢* - d?) b, )

CMRt; 4,1,7,6 (a'=2 V/2d* +2% -1, b’ =2a,¢' =2 /3 +64% -2Db°)

CMR¢g 4,2,5,7 (a'=2 V3a® +6b* =267 ,b' =2 \/2a> +2b* =2, ¢’ =2b)

Testing results are illustrated in Fig. 2. The y-axis of this
figure represents four mutants of TriSquare, and the x-axis
indicates testing with corresponding types of the OTC( num-
ber on x-axis (Tri,5))and CMR(CMRt, ). Here, an input
I is said to arouse a mutant M if the run of TriSquare with /
can make the sentence including M be executed. A gray rec-
tangle denotes that the mutant aroused by a relevant type of
the OTC can be detected by relevant CMR. A shaded rec-
tangle denotes the detection of a mutant that is not aroused
by a relevant type of OTC(aroused by FTC). A black rec-
tangle denotes that the mutant aroused by a relevant type of
OTC cannot be detected.

Detection of the mutant
that is aroused by OTC

Detection of the mutant
that is not aroused by OTC

As Fig.2 shows, all four mutants could be found by any
of these six CMRs. Compared to mr, ,, CMRt, . perform
perfectly in testing TriSquare. When CMRt, . themselves
are mentioned, CMR¢, ; ¢ are better than CMRt, , ,, because
the former can detect any mutants that are aroused by
OTCs. The experimental results show that the greater an
MR makes its OTC and FTC different, the better it is. For
example, sometimes both the OTC and the FTC of CM-
Rt, , , are isoceles triangles, and they execute the program
with the same data, so mutants cannot be detected. But this
case will not take place when CMRY¢, ; , are used, because in

Mutant that is aroused by
OTC and could not be detected

1 2 3 4 5:1 2

3 4 5:!1 2
CMRt, ;

CMR, |
Fig. 2

3 4 5:1
CMRt, :

2 3 4 501 2

3 4501 2
CMRt, :

3 45 Th.
CMRts

CMRis 5

Testing results for TriSquare with CMRt, _,



442 Dong Guowei, Xu Baowen, Chen Lin, Nie Changhai, and Wang Lulu

most cases their FTCs are anomalistic triangles which are
much different from the OTCs.

3.3 Conclusion for experiment

Based on the above data, the following conclusions can
be drawn:

1) The application domain of the CMR should be clearly
defined. That is to say, when mr,, mr,, ..., mr,, mr,,,, ...,
and mr, are composed, the FTC of mr,,, should be used as
the OTC for mr,. Otherwise, the CMR is illegal itself, and
the testing results are not believable. As for the first case
study, SC; is not applicable for MR,, and this unconformity
should be embodied by the limitation on a new CMR’s
OTC, in other words, the application domain of a new CMR
should be strictly prescribed.

2) MR selection greatly affects the performance of a new
CMR. In fact, the capability of a CMR is mostly decided by
several central MRs forming it. For the case study of TriS-
quare, the central MRs of CMRt, and CMRt, are mr; ,and
mr,, respectively, so their testing capabilities are different
from each other.

3) Sometimes, the sequence of composition has a great
effect on a new CMR’s efficiency. For example, in case
study 1, when MR, is composed before MR,, mutants 4 and
5 will be detected by SC,. Otherwise, they cannot be found.
So CMRs, and CMRs; perform diversely. This is mostly be-
cause the switch of the composition sequence changes the
essence of the testing. But this case is not always true. The
CMRs will not have a bit of difference; however (r,, )
and (r,, r,) are composed.

4) New CMR should make the difference between its
OTC and FTC much larger than those of each MR forming
it. The difference is embodied in multi-aspects. First, as for
the program structure, CMRs; , of SpMatMul can generate
FTCs running a different program path for SC, ,, but MR, _,
cannot; Secondly, as for the program function, CMR¢, ; , of
TriSquare can generate FTCs with entirely different shapes
for isosceles triangle OTCs, but mr, , cannot. So the CMRs
of these two programs are much more effective than their o-
riginally formed MRs.

5) With CMRs, errors can be detected by much fewer test
cases. A lot of redundancy is avoided when CMRs are
used, and the error detection performance of CMRs is great-
ly improved, so we can find errors with much fewer test ca-
ses.

4 Conclusion

In this paper, testing on CMR is researched systematical-
ly. We first present the concept of CMR based on the spec-
ulative law of proposition logic, and then prove its useful-
ness in error detection with two case studies. Finally, some
conclusions for CMR construction are provided.

As future work, we would like to provide algorithms and
tools for constructing CMR automatically.
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