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Abstract: The NP-hard no-wait flow shop scheduling problems
with makespan and total flowtime minimization are considered.
Objective increment properties of the problems are analyzed. A
non-dominated classification method is introduced to class
population individuals into Pareto fronts to improve searching
efficiency. Besides investigating the crowding distance and the
elitist solution strategy, two effective bi-criteria local search
procedures based on objective increments are presented to
improve searching effectiveness. Based on the properties and
methods, a hybrid evolutionary algorithm is proposed for the
considered problems and compared with the best existing
algorithms. Experimental results show that the proposed algorithm
is effective with high efficiency.
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he no-wait flow shop is a typical constrained scheduling
Tproblem in which the operations of each job should be
processed without interruption between consecutive ma-
chines, i. e. , the start of a job must be delayed on the first
machine when necessary so that the job need not wait for
processing on subsequent machines. No-wait flow shops ex-
ist in such settings as chemical processing, metal processing
and canning operations in food processing. Modern manufac-
turing systems such as just-in-time, flexible manufacturing
environments, and robotic cells can also be modeled as no-
wait flow shop scheduling problems.

For decades, more attention has been attracted on no-wait
flow shop scheduling problems with a single criterion opti-
mization, especially on makespan''™ . However, multi-crite-
ria are taken into account at the same time in real practice.
For the multi-objective no-wait flow shop scheduling prob-
lems, there are only a few algorithms currently available. Al-
lahverdi and Aldowaisan'” proposed a heuristic algorithm
PAAH for minimizing a weighted sum of makespan and to-
tal flowtime. Later, they also proposed two meta-heuristic al-
gorithms HAS and HG"™ to optimize a weighted sum of
makespan and maximum lateness. Recently, Reza et al. ™
proposed the meta-heuristic algorithm HMOIA to optimize
the weighted mean completion time and weighted mean tar-
diness. The considered objectives often conflict with each
other. In other words, optimizing one objective often deterio-
rates other ones. Therefore, a perfect multi-objective solution
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that simultaneously optimizes each objective function is al-
most impossible. It is desirable to get a set of candidate solu-
tions rather than just one solution for decision-makers; these
are called Pareto solutions. A Pareto optimal set is a set of
solutions in which none is dominated by another. A deci-
sion-maker can choose his preferred solution as the final so-
lution according to some trade-off. The genetic algorithm
(GA) is a popular method for multi-objective optimization
problems. Jones et al. """ reported that 90% of the approa-
ches to multi-objective optimization aimed at approximating
the true Pareto front for the considered problem.

In this paper, a hybrid evolutional algorithm based on ob-
jective increments” ™ is designed for searching locally the
Pareto-optimal frontier for no-wait flow shops in order to
minimize makespan and total flowtime simultaneously.

1 Preparation
1.1 Problem description

A no-wait flow shop is a constrained flow shop schedu-
ling problem with n jobs {J,,J,, ..., J,} being processed on
m machines M,, M,, ..., M, . Each job is processed sequen-
tially on m machines without delay between adjacent ma-
chines. The start of a job must be delayed on the first ma-
chine when necessary so that the job need not wait for pro-
cessing on subsequent machines. Let O, ; be the operation of
jobj(j=1,2,...,n) processed on machine i(i =1, 2, ...,
m); t,; be the processing time of O, ; §,; and C,; be the
starting time and finish time of O, ;. The optimization objec-
tives are to find the schedule with both the minimum makes-
pan and the total flowtime, i. e. finding the job sequence 7
= () Tigys ooes Ty (g € U1 45, o0, J, ) is the i-th job

of 7 with minimum C,_, and minimum 2 C,, ;(denoted as
i=1

F,(m)).

1.2 Non-dominated solutions

In a bi-objective optimization problem, a feasible solution
x dominates another feasible solution y(x>y), if and only if
7z(x) =z(y) Vie{l,2,...,k} and z;(x) <z,(y) for at least
one objective function j. A solution is said to be Pareto op-
timal if it is not dominated by any other solution in the solu-
tion space. A Pareto optimal solution cannot be improved
with respect to any objective without worsening at least one
other objective. The set of all feasible non-dominated solu-
tions in X is referred to as the Pareto optimal set, and for a
given Pareto optimal set, the corresponding objective func-
tion values in the objective space are called the Pareto front.

For a sequence S, the corresponding value of makespan
and total flowtime are denoted by Z,(S), Z,(S) in this pa-
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per. If Z(S) <Z.(S)(r=1,2) and Z.(S) <Z.(S") for at
least one r, sequence S dominates sequence S’. Otherwise,
the two sequences non-dominate each other.

1.3 Objective increment

According to Refs. [5 — 6], in most heuristics for flow
shops, there exist two fundamental operations, insertion and
pair-wise exchange. In these heuristics for flow shop schedu-
ling problems, both constructive and improvement phases
generate new partial sequences from a parent partial se-
quence. In traditional heuristics, all new partial sequences are
evaluated by computing the finish times of all the jobs.
However, this is not necessary for a no-wait flow shop be-
cause there are only a few slots that are changed in a new
partial sequence from its parent. Therefore, only the changed
partial sequences are needed to be calculated. The difference
of the objective function value between the new offspring
sequence and its parent sequence is called the objective in-
crement. It is obvious that the computational time can be
considerably reduced just by computing objective incre-
ments.

between the finish times of the two adjacent jobs J; and J,.
n-1 n-1

F(m) = 2 (n =)D iy = 2 (n —i)d}, denotes the
i=0 i=0

value of the total flowtime of sequence 7. Similar to Ref.

[5], the following properties are true.

Theorem 1 If job J_ is inserted into the position be-
tween slot i and j of (0 <i <j<n), the makespan incre-
ment is (J, is excluded from sequence 7) 6(i,j, q) =D,
+D, 1y = Dy

Theorem 2 When job J,, and J;, (0 <i<j<n) of 7 are
exchanged, the makespan increment is

il.q

Orioin.ttien — O, tivantien] J=i+1

wc(i’j) = 8[,‘-1],[”1],[/] +6[/’—1],[i+1],[i] -

=0, 1 otherwise

5li—|lvli+|lvlil J+11, U1

For simplicity, let x, ,(7), s(k) and y, (7) be

0 i =n

x,(m) = {(n =D (Dfy ,; —diy)

otherwise

0 Jj=n
v, (m) = {(n -)(D,, -d7) otherwise

0 k <0

s(m) =0 & .
7 {de

i=0

k=0

Theorem 3 If job J_ is inserted into slot j of 77(0<j<
n), the total flowtime increment is

A’rl(n’j) :S(j_l) +(l’l—j+1)D,an +yq,,-(7T)

Theorem4 When J,; and J;, (0 <i <j <n) of 7 are ex-
changed, the total flowtime increment is

X (m) +y, (m) +(n =D (D1
X (m) +y, () +x,_ () +y, (7

—dr) j=i+l

otherwise

(i) = {

In this paper, the above objective increment properties are
adopted to evaluate the makespan and the total flowtime of
any new generated solution in order to reduce computation
time.

2 Population Classification

Generally, the Pareto sorting procedure applies to each
generation of a multi-objective genetic algorithm, which is
one of the key factors to the algorithm efficiency. In other
words, the computational time of the algorithm can be re-
duced greatly if the efficiency of the Pareto sorting proce-
dure is improved. During the sorting procedure, an obtained
population of solutions is classified into many non-domina-
ted fronts. All solutions on the first (i. e., the best) non-
dominated front are non-dominated with respect to each oth-
er, and at least one of its solutions dominates another solu-
tion on the remaining non-dominated fronts. Similarly, all
solutions on the second non-dominated front are non-domi-
nated with respect to each other, and at least one of its solu-
tions dominates another solution on the remaining fronts ex-
cept the first front. All solutions in a population are classi-
fied by such a non-dominating relationship. All solutions on
different fronts are assigned to different priorities. The solu-
tions on the first non-dominated front are assigned with front
1, the highest priority. Fig. 1 shows the classification of an
instance.
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Fig.1 Non-dominated solutions classification

All the solutions in a Pareto front( front 1, front 2, front 3,
...) are arranged in increasing order of one performance
measure and in non-increasing order of the other. So all so-
lutions can be sorted by the divide-and-conquer method.
And the main computation time focuses on sorting solutions
by C,..-

3 Proposed Hybrid Evolutionary Algorithm

In this paper, a hybrid evolutionary algorithm based on
the GA is proposed. To accelerate convergence to the pro-
posed algorithm, NEH"", GR'", 1H7™, RAJ™® and
PAAH"" are adopted to generate several solutions for the in-
itial population. For a population with size N, the remaining
N, -5 individuals are generated randomly. A binary-tourna-
ment selection is adopted and the tournament size is two.
Two chromosomes are chosen randomly from the parent
population. The more appropriate chromosome ( the rank is
smaller) , the more chance to be selected. The chromosome
with fewer fitness function values can also be accepted with
a probability (e. g.,0.1). The two selected chromosomes
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cannot be identical and are subsequently subjected to cross-
over and mutation. If the two selected chromosomes are on
the same front, the crowding distance is introduced to anoth-
er metric. This crowding distance measure is a tiebreaker in
selection. If the solutions are on the same non-dominated
front, the solution with a higher crowding distance is the
winner. Otherwise, the solution with the lowest priority is se-
lected. The crowding distance d; of chromosome i with re-
spect to all other chromosomes on the same front is used,

defined as d, = ZDU. Here, D, =
JETT)
i#]

: Z.(1) -Z.()) : .
z - - - is the crowding
\/,1 (iglﬁ{c){Z,(l)} - min {Z, (i)} )

distance between chromosome i and j. f; denotes the front on
which chromosome i lies, and {F,} denotes the set of chro-
mosomes that lie on the same front as that of chromosome i.

Single-point crossover is adopted with crossover probabil-
ity 1. Though the mutation probability is 0. 1, mutation con-
ducted or not is determined by a random number u. Mutation
is performed only when #<0. 1. During a mutation, two ran-
dom positions i and j are chosen, the corresponding jobs are
exchanged.

The parent population p, and the offspring population O,
with size N, is combined as C,,i.e. C, =p,UO,. C, is also
classified into fronts. The next generation is determined by:
1) Choose all the best chromosomes(on front 1)in the com-
bined population C, and copy them to the archive;2) Choose
N, chromosomes from the combined population C, and copy
them to the next generation population p,,,.

A new archive is used to maintain the elitist solutions. In
order to find more and better non-dominated solutions on the
best front, a light local stir strategy is adopted in the
archive. An update procedure is first presented.

1) For sequence 7r,, after a local stir operation(i. e., in-
sertion and swap), compute the objective increments of
makespan A, and total flowtime A,.

2)If (A.=0 and A, =0) then Halt.

3) Generate a new sequence 77, by applying a stir opera-
tion on ;.

4) If (A.<0 and A;<0) then

Replace 7r; with 7.

Else/ * (non-dominated solution) * /

If ( | Archive | <N,) then
Insert 77/ into the archive;

Else
Calculate d(7}), the crowding distance of se-

quence 77, .

If d(7;) >d(ar,) then Replace 7r; with 77}.

The archive local search( ALS)is a procedure to update all
the chromosomes in the archive. For any of the chromo-
somes, calculate A, and A, for two random positions. Call
update procedure to update the archive. Then calculate w,
and w,, for two random positions. Also call update procedure
to update the archive.

The obtained solutions by the above procedure can be fur-
ther improved by the following ISOA (improving the solu-
tions of the archive) procedure. To improve the efficiency of
the algorithm, an objective increment method is adopted.

which is

1) The size of the archive is initialized as N.,.
2) Fori=1 to N,
@D Forj=2ton
For the selected chromosome 7r;, consider the current
position j and each possible slot of 77,. Then calculate A,
and A,
Call update procedure to update the archive.
@ PForj=2ton-1
For the selected chromosome 7r,, consider the current
position j, j+ 1 and the each possible slot of 7,. Then cal-
culate A, and A,.
Call update procedure to update the archive.
@ Forj=2ton
For the selected chromosome 7, consider the current
position j and each possible slot of 7r;. Then calculate w,
and w.,.
Call update procedure to update the archive.
3) Halt.

Based on the above statements, the proposed multi-objec-
tive genetic algorithm is described below.

1) Npethe size of population, Nee@, itNum+«—0, max-
itNum«—the maximal iteration number, p_«—1, p_<«0. 1.

2) Generate the initial population p, by the algorithm giv-
en above.

3) Calculate the value of makespan and the total flowtime
of each chromosome in the population.

4) Sort the initial population and calculate the values of
the rank of each chromosome in the population.

5) If itNum = maxitNum go to 6).

(D Apply crossover and mutation to population and gener-
ate offspring population O, with N individuals.

(@ Calculate the two objectives of each chromosome in
0,.

3 C«—P,U O,(size being 2N,). Sort population C, and
calculate the crowding distance of each chromosome in the
C.,.
@ Select N, chromosomes from C, to generate p,.,. Copy
all the best solutions on the front 1 to the archive and re-
move those dominated solutions.

(® Call ALS to update the archive. itNum«—itNum + 1.

6) Apply ISOA procedure to improve the solutions of the
archive.

7) The solutions in the archive are the Pareto-optimal so-
lutions. Stop.

4 Experimental Results

The performance of the proposed multi-objective genetic
algorithm is compared with three well-known heuristics,
PAAH"', PGA-ALS" and NSGA-II'""'. All algorithms have
been coded in Java and executed on a Pentium(R)4, 3 GHz,
and Window XP with 512 MB RAM.

All the test data used in all the algorithms come from the
50 benchmark problems(Ta071 to Tal20) given by Tail-
lard"" . The population size is set as 200 and the archive size
is 100 with the number of iterations being 2 000. Also, to
generate the same size solution set with other genetic algo-
rithms, parameters of PAAH are initialized with o =0 and
step =0. 006 25.
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All the compared algorithms are measured on effective-
ness and efficiency by optimal (ratio of obtained non-domi-
nated solutions) and time (consumed computation time), re-
spectively. Tab. 1 shows the results for the compared algo-
rithms.

Tab. 1 shows that OPT of NSGA-II is zero in all the in-
stances. In other words, the effectiveness of NSGA-II is the

Tab.1 Comparison

worst among the compared algorithms. The proposed algo-
rithm obtains the best OPT for most instances. In fact, the
other two algorithms outperform the proposal only in five in-
stances( Ta075, Ta085, Tal09, Tall4 and Tall6). NSGA-II
needs the least computation time. Time taken by PGA-ALS
is similar to that of the proposal and Time of the proposal is
usually less than that of PGA-ALS. PAAH is too time-con-

results of the algorithms

PGA-ALS NSGA-II PAAH Proposed algorithm
Instances
Optimal Time/s Optimal Time/s Optimal Time/s Optimal Time/s
Ta071 0.0 60. 5 0.0 106.9 13.6 210.6 86. 4 41.8
Ta072 0.0 61.6 0.0 101.9 12.5 210.6 87.5 39.5
Ta073 0.0 63.0 0.0 109. 5 13.6 211.3 86. 4 36.3
Ta074 0.0 72.5 0.0 103.9 16.7 211.3 83.3 41.3
Ta075 0.0 60.9 0.0 108.9 57.1 211.3 42.9 31.8
Ta076 10.0 54.1 0.0 94.0 0.0 208. 8 90.0 37.2
Ta077 0.0 55.5 0.0 103. 4 16.7 208.8 83.3 39.2
Ta078 0.0 50.3 0.0 101. 6 11.1 160. 6 88.9 35.1
Ta079 14.3 54.3 0.0 101.9 21.4 208.8 64.3 37.3
Ta080 0.0 55.1 0.0 101.3 18.2 208. 8 81.8 32.8
Ta081 25.0 56. 1 0.0 103.7 18.8 218. 1 56.3 38.3
Ta082 68. 8 57.4 0.0 104.7 6.3 218.8 25.0 36.7
Ta083 2.7 53.2 0.0 103.9 8.1 219.4 89.2 37.2
Ta084 0.0 68. 1 0.0 105. 8 10.0 216.3 90.0 35.6
Ta085 69.2 61.3 0.0 99.2 23.1 216.9 7.7 34.4
Ta086 0.0 69.5 0.0 105. 4 10.0 216.3 90.0 45.3
Ta087 33.3 61.2 0.0 101.3 9.5 216.9 57.1 32.3
Ta088 10.5 54.3 0.0 104.2 15.8 216.3 73.7 32.7
Ta089 36.4 58.5 0.0 100. 1 27.3 216.3 36.4 36.5
Ta090 22.2 54.6 0.0 105.7 33.3 216.9 44.4 40.8
Ta091 13.6 100. 5 0.0 113.7 4.5 1862.5 81.8 100. 1
Ta092 10.5 101. 8 0.0 110. 6 10.5 1861.9 78.9 81.8
Ta093 0.0 94. 4 0.0 116.2 38.5 1851.3 61.5 74.5
Ta094 5.6 100. 5 0.0 111.1 16.7 1872.5 77.8 86.7
Ta095 0.0 101.7 0.0 114.4 21.4 1871.3 78.6 77. 1
Ta096 30. 8 101.9 0.0 108. 5 15.4 1 866.9 53.8 80. 1
Ta097 0.0 105.2 0.0 113.2 5.6 1 866.9 94.4 99.9
Ta098 13.0 102. 4 0.0 113.9 13.0 1 866.9 73.9 80.8
Ta099 0.0 102. 4 0.0 109.7 10.0 1852.5 90.0 70. 4
Tal00 11.1 108. 6 0.0 114.3 22.2 1852.5 66.7 83.0
TalOl 0.0 115.0 0.0 118.1 20.0 1923.1 80.0 73.4
Tal02 22.7 116.4 0.0 117.6 9.1 1921.3 68.2 94.4
Tal03 0.0 111.3 0.0 117.6 26.7 1891.3 73.3 78. 1
Tal04 0.0 119.5 0.0 118.5 20.0 1925.6 80.0 80.6
Tal05 0.0 111.5 0.0 120.9 14.3 1 868. 1 85.7 76.7
Tal06 0.0 115.3 0.0 118.1 46.2 1918.1 53.8 84.5
Tal07 13.0 120.9 0.0 120.9 8.7 1927.5 78.3 91.1
Tal08 0.0 107. 1 0.0 126.2 30.0 1 996.3 70.0 75.2
Tal09 52.9 112.9 0.0 127.3 23.5 2 068. 8 23.5 92.9
TallO 0.0 126.2 0.0 126.9 33.3 2031.3 66.7 85.6
Talll 30. 4 604.7 0.0 198.6 8.7 33 065.0 60.9 685. 8
Tall2 21.4 599.9 0.0 194.1 17.9 33 300.0 60.7 664. 8
Tall3 42.3 602. 4 0.0 194.8 7.7 31 873.8 50.0 672.8
Tall4 44.0 599.7 0.0 206.9 20.0 31 903. 1 36.0 700. 8
Tall5 44.9 600. 2 0.0 208.2 8.2 32 125.0 46.9 774.8
Tall6 13.3 590.7 0.0 197.2 60.0 32 154.4 26.7 678.5
Tall7 36.0 599.4 0.0 203.9 0.0 32 205.0 64.0 718.7
Tall8 13.9 604. 5 0.0 204.3 5.6 32 186.3 80.6 704.2
Tall9 12.2 608. 6 0.0 207.5 0.0 31785.6 87.8 710. 8
Tal20 13.6 604.9 0.0 200.0 27.3 31 945.4 59.1 683. 4
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suming. For example, it takes NSGA- 1 only 27. 3 s; PGA-
ALS takes 604.9 s and the proposed algorithm 683.4 s,
while PAAH takes 31 945. 4 s for Tal20.

5 Conclusion

This paper presents a genetic algorithm based on objec-
tive increments for solving no-wait flow shop scheduling
problems with the objective of the minimization of the
makespan and total flowtime. Non-dominated classification
and crowding distance, coupled with the use of the elitist
solution strategy, are proposed. A fast Pareto sorting ap-
proach and two effective bi-criteria local search procedures
based on objective increments are introduced. Experimental
results indicate that the proposed algorithm outperforms the
other compared algorithms in most instances. The proposed
algorithm obtains the best ratio of the Pareto solution in 45
out of the 50 compared instances. Though PAAH is the best
among the existing algorithms, it outperforms the proposed
algorithm in only four instances while it consumes more
than 40 times computation time than the proposed algo-
rithm. Therefore, the proposed algorithm is more suitable
for the considered problems.
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