Journal of Southeast University (English Edition)

Vol. 24, No. 4, pp. 455 —-461

Dec. 2008 ISSN 1003—7985

Context-attributed graph grammar framework
for specifying visual languages

Zou Yang' Zeng Xiaoqin'

Han Xiuging'

Zhang Kang’

(' College of Computer and Information Engineering, Hohai University, Nanjing 210098, China)
(*Department of Computer Science, University of Texas at Dallas, Texas 75080-3021, USA)

Abstract: Since the specifications of most of the existing context-
sensitive graph grammars tend to be either too intricate or not
intuitive, a novel context-sensitive graph grammar formalism,
called context-attributed graph grammar(CAGG), is proposed. In
order to resolve the embedding problem, context information of a
graph production in the CAGG is represented in the form of
context attributes of the nodes involved. Moreover, several
properties of a set of confluent CAGG productions are
characterized, and then an algorithm based on them is developed
to decide whether or not a set of productions is confluent, which
provides the foundation for the design of efficient parsing
algorithms. It can also be shown through the comparison of
CAGG with several typical context-sensitive graph grammars that
CAGG is more succinct and, at the same time, more intuitive
than the others, making it more suitably and -effortlessly
applicable to the specification of visual languages.

Key words: visual language; graph grammar; context-attributed;
parsing; confluence

iagrammatic visual languages, such as the entity-rela-
D tionship data model, control/data flow diagram model
and CASE tools have been frequently used in database de-
sign and software engineering. Unlike a textual language
whose syntax is always formally defined to facilitate effi-
cient parsing algorithms, most of the diagrammatic ones are
not equipped with formal syntactical definitions and parsers,
even though a graph grammar can serve as a natural tool for
this purpose. This is due to the fact that most of the existing
graph grammars require expertise to design. To make a
graph grammar framework practically useful, a simple and
intuitive specification mechanism, strong expressive power
and an efficient parsing algorithm are essential.

In the literature, several practically useful graph grammars
and their parsing methods have been proposed, such as rela-
tional grammar'", unification grammar'”, constraint multiset
grammar"', C-edNCE graph grammar'”', and adaptive star
grammarm, etc. However, these formalisms have difficulty
in specifying some popular graphs, such as abstract syntax
graphs for ER diagrams, and thus are limited in expressive
power. In addition to the formalism of graph grammars, par-
sing efficiency is another major issue to which researchers
have also devoted much effort"™'.

Rekers and Schiirr'® developed the layered graph gram-

Received 2008-01-21.

Biography: Zou Yang(1976—), male, lecturer, yzou@ hhu. edu. cn.
Foundation items: The National Natural Science Foundation of China(No.
60571048, 60673186, 60736015), the National High Technology Research
and Development Program of China(863 Program) (No.2007AA01Z178).
Citation: Zou Yang, Zeng Xiaoqin, Han Xiuging, et al. Context-attributed
graph grammar framework for specifying visual languages[J]. Journal of
Southeast University (English Edition), 2008, 24(4) : 455 —461.

mar(LGG) formalism in order to specify a wider range of
visual languages. The LGG is context sensitive and thus
highly expressive. By explicitly specifying all context ele-
ments on both sides of productions to address the embedding
problem, the LGG provides an intuitive formalism without
any embedding rule for users to easily define visual langua-
ges. However, its lexicographical order enforcement on each
production for ensuring the decidability of the membership
problem is intractable, and its parsing algorithm is intricate
and has exponential time complexity.

Based on the LGG, Zhang et al. """ proposed another con-
text-sensitive formalism, reserved graph grammar (RGG),
which is an improvement over the LGG in simplifying the
specification and parsing. The RGG introduces a two-level
node structure in the node-edge format to represent any giv-
en graph, and a marking mechanism to identify each context
element with a unique label. It imposes a simple embedding
rule to address the embedding problem, rather than explicitly
specifying context elements in each production as in the
LGG. Furthermore, the same authors developed a so-called
selection-free parsing algorithm (SFPA) for the RGG with
polynomial time complexity based on confluent graph gram-
mars, and concluded that a graph grammar is confluent
whenever its productions are confluent. The RGG, however,
has the following weaknesses. The marking technique and
the two-level node structure are not intuitive; i. e., it iS not
straightforward enough to create a production of node-edge
format with its context elements properly marked. Moreo-
ver, even a comparatively simple set of productions may be
non-confluent, and thus the SFPA cannot be applied to such
a graph grammar.

The above observations motivate the work in this paper.
The contribution of this paper includes two aspects. First, a
new context-sensitive graph grammar formalism, called con-
text-attributed graph grammar(CAGG), is proposed, which
is more succinct and, at the same time, more intuitive than
the existing ones. Second, several properties of the CAGG
are characterized, and an algorithm that decides whether a
set of productions is confluent is proposed, laying the foun-
dation for employing efficient parsing algorithms.

1 Fundamental Concepts in the CAGG

A graph grammar generally consists of an initial graph
and a set of graph productions, and thus defines a set of
graphs which are generated by iteratively and arbitrarily ap-
plying the productions to the initial graph in different man-
ners. To demonstrate how a CAGG works, a process flow
diagram is introduced in Fig. 1 as an example and a CAGG
specifying process flow diagram is given in Fig.2.

456

Zou Yang, Zeng Xiaoqin, Han Xiuqing, and Zhang Kang

receive

Fig.1 A process flow diagram

A production, also called a rewriting rule, comprises two
directed graphs each on one side of the definition symbol
“: =7, as shown in Fig. 2. The graph on the left (right) hand
side is called the left (right) graph. For simplicity, we stipu-
late that each node in a production has two connecting
points: one, on the top of it, and the other, at the bottom, are
for edges directing to and from the node respectively. A pro-
duction can be applied to given application graphs (called
host graphs). A redex of a production is a subgraph in a host
graph that is isomorphic to its left or right graph. When a re-
dex of the left graph of a production occurs in a host graph,
one can replace this redex by the right graph, which is called
an L-application of this production. An R-application is the
reverse replacement.

(1) axiom (2) assignment
begin
A= | stat Stat |:=| assign
end f={(Stat, assign)}

(3) if statement

(4) fork/join process(a)

Hfork
A
- e Stat Stat
\/
J={(Stat, {fork, join})} ol Ol

(5) fork/join process(b) f={(fork, fork), (join, join)}

v
Stat = Stat Stat
- o

(6) send/receive pair

Statl - send |
Stat2 receive| | Stat
f={(Statl, send),

(Stat2, receive)}

fF= T
,,,,,,

f={(send, send), (receive, receive), (Stat, receivel)}

(8) statement sequence

f={(Stat, {Stat1, Stat2)}

Fig.2 A CAGG for process flow diagrams

The L-application defines the language of a graph gram-
mar. The language comprises all possible graphs which have
only terminal nodes and can be derived from the initial
graph of the grammar. The R-application is used to parse a
given graph in order to check whether it is a member of the
language defined by the graph grammar. When conducting
an L- or an R-application, we need a mechanism to estab-
lish relationships between the substitute of a redex and its
surrounding elements, which is called the embedding prob-
lem'"" .

During the process of embedding a graph into a host
graph, it is necessary to avoid creating dangling edges. That
is, the connecting positions on each node of a redex to or
from which edges outside of it are directing should be pre-
served in the resulting host graph, since these edges are the

bridges between the redex and its surrounding context ele-
ments. These connecting positions of interest can simply be
divided into two categories: one, called the upper connect-
ing point, is for edges arriving in the node; and the other,
called the lower connecting point, is for edges leaving the
node. Essentially, the connecting points on a redex, which
encode the contextual information for embedding the redex
into a host graph, can be collected from the left or right
graph of the production to which they correspond. Using
this fact, the CAGG introduces an attribute ci to each node
in a production to specify the context information it carries
(that is, the connecting points). The value of the ci can be
full, upper partial, lower partial (hereafter abbreviated to
up and [p respectively) and null. A node on a production
with a ci evaluated to up (Ip) preserves its upper(lower)

Context-attributed graph grammar framework for specifying visual languages 457

connecting point when it is applied, while a node with a ci
evaluated to full keeps both points. A node with a ci evalua-
ted to null does not contain any context information. As
drawn in Fig. 2, the four types of nodes are partially shad-
owed in the upper half, partially shadowed in the lower
half, completely shadowed and transparent. The nodes la-
beled “if” and “end” in production 3, the one labeled
“Stat” in production 3 and that labeled “begin” in produc-
tion 1 are corresponding examples. Production 3 also shows
that the two connecting points in the node labeled “Stat” in
the left graph are preserved, and correspond to the upper
point in “if” and the lower point in “endif” in the right
graph.

Then, an embedding rule, also called the dangling condi-
tion'”, is imposed on the CAGG requiring that if a node in
the left or right graph of a production does not preserve a
connecting point, and has an isomorphic node in a redex of
the graph in a host graph, then all the edges connected to
this point should be completely inside the redex.

This embedding rule guarantees that any application of a
production will not create dangling edges.

In Fig. 3(a), the graph in the dashed rectangle is a redex
of the right graph of production 5 but not of production 4 in
that there is an edge outside of the dashed rectangle directed
to the upper connecting point of “join”, which contradicts
production 4. The resulting graph after an R-application of
production 5 is given in Fig. 3(b), which apparently is a re-
dex of the right graph of both productions 4 and 5.

1
i fork |! | fork |1
1
! ; | :
5] [9 o) [
1 | I
| , e
| join |} i om |1
: | W

Fig.3 An example of R-application

2 Formal Definition of the CAGG

This section first gives formal definitions of graphs, pro-
ductions and redexes of productions in a host graph, and
then defines the CAGG.

Definition 1 G = (N, E, [, I, in, out) is a directed
graph over two label sets Lb, and Lb,, where

e N and E are finite sets of nodes and edges, respec-
tively;

e Iyt N—>Lby and [;: E—Lb, are mappings from
nodes and edges to their labels, respectively;

e in(out): NUE—EUN is a mapping that assigns
each node the set of edges that are directed to(from) it
or assigns each edge its target(source) node.

Definition2 G =(N, E, I, [, in, out, ci, nt)is an at-
tributed directed graph over two label sets Lb, and Lb,,
where N, E, I, I, in, out are defined as the above and

o ci: N—Ct = {full, up, Ip, null} assigns each node a
piece of context information;

e nt: N—{terminal, nonterminal} assigns each node a
node type.

Two operators \/ (union) and /\ (intersection) are de-
fined on Ct as: up V Ip = full, up N\ Ip = null. The set of

nodes in G containing context information (also called
context nodes) is defined by CI(G) = {n e N | ci(n) #
null}. The value full for context essentially indicates
both up and Ip, and thus a full-valued node n under
some circumstances can also be viewed as two separate
nodes which are evaluated to up and Ip, respectively.
For clarity, labels on nonterminal nodes are initially
capitalized.

In the sequel, a directed (or an attributed directed)
graph G will be compactly denoted as G = (N, E), and
N; and E; will be used to represent the sets of nodes
and edges of G, respectively, whenever it is clear from
the context.

Definition 3 Let G be an attributed directed graph
and CI(G) the set of context nodes in G, a set {P,, ...,
P} is an attribute partition on G, denoted by Pr(G), iff

e P,CCI(G),P,U...UP, =CI(G), P,NP, =,
and 1< | P,| <2, where 1<i,j, k<n;j#k;

o If P, ={n,,n,} then ci(n,) =up and ci(n,) =Ip.

The principle underlying an attribute partition on a
graph G is that the union of context information carried
by every node in P, can be assigned to a single node in
another attributed directed graph; i. e., the context in-
formation collected from P, must be up, Ip, full or {up,
Ip}.

Definition 4 A production p:= (L, R, f) is a pair of
attributed directed graphs over the same label sets Lb,
and Lb, with a bijection f: Pr(L) —Pr(R) such that if
fP) =0Q,(1<i,j<n), then

o!Pl=1=10|=1V[Q]=2and [P]=2=
‘ Qj ‘ =1;

o cilm) V...\Vci(m) =ci(n) V...Vci(n), 1<k,
I<2;
where Pr(L) ={P,, ..., P,},Pr(R) ={Q,, ..
{m;,....,m} and Q, ={n,, ..., n}.

The bijection f establishes a correspondence between
the connecting points in the left graph L and the right
graph R of a production, that is, R preserves the same
context information as in L. For instance, f({Stat}) =
{if, and }), written as f = {(Stat, {if, and}) } in (3) of
Fig. 2, means that the two connecting points on node
“Stat” of L are preserved separately as the upper con-
necting point on “if” and the lower one on “end” of R.
fis often omitted when the context information corre-
spondence is clear from L and R. Hereafter, notations
p. L and p. R are used to specify the left and right graphs
of a production p.

Definition 5 A production p:= (L, R, f) is well-de-
fined if for each connected component S of L or R,
there is at least one node n e Ny such that ci(n) # null.

Definition 6 Two directed graphs G, =(N,, E,, I,
lg,,iny,out;) and G, = (N,, E,, Iy, I, in,, out,) are

] Qn}9Pi =

isomorphic, denoted by G, =G,, if there is a pair of bi-
jections f,: N,—N, and f,: E,—FE,, satisfying

on’lENl(lN](n) :lNz(fl(n)));

oeVecek, (lEl (e) = lEz(f2(e)) NfiCin (e)) =
in,(f,(e)) Nfi(out,(e)) =out,(f,(e))).

Definition 7 A subgraph S of a directed graph H is

458

Zou Yang, Zeng Xiaoqin, Han Xiuqing, and Zhang Kang

a redex of an attributed directed graph G, denoted by S
e Rd(H, G), if there is a pair of bijections f,: N;—N;
and f,: E;—E; such that

e G =S under the two bijections f, and f;

e YneN,VeecE,((ci(n) =up\ ci(n) =null) \
(out(e) =f,(n))=in(e) e Ny);

eVneN;VeecE,((ci(n) =lpV ci(n) =null) N\
(in(e) =f,(n))=out(e) e Ny).

Definitions 4 and 7 guarantee that L- or R-application
of a production to a host graph will never create dang-
ling edges.

Definition 8 Let G, and G, be the left and right
graphs in a production p with a bijection g: Pr(G,) —
Pr(G,) where Pr(G,) ={P,, ..., P,} and S is a redex of
G, in a host graph H under two bijections f, and f, as de-
fined above, the substitution of S in H by G, is the fol-
lowing process:

1) Delete S from H except for these nodes with ci(n)
null(denoted by Rj);

2) Partition Ry into {V,, ..., V,} such that n e V, iff n’
e P, where n =f,(n’) and 1 <i<n, and then replace V,
in H with g(P,);

3) Glue G, onto H along _Llleg(P).

In the second step of the substitution, it is worth men-
tioning that when |V,| =1 and [g(P,) | =2, say, V, =
{n} and g(P,) ={n,,n,} with ci(n,) =up and ci(n,) =
Ip, those edges in H originally directed to and from n
should be directed to n, and from n, respectively. This
substitution relation between H and the resulting graph
H' is written as H' =St(G,, G,, S, H) . Since H' is com-
pletely dependent on S, this process can be succinctly
described as H °*H'.

Similar to a textual grammar, notations on derivation
and reduction are necessary. By H "% H' we de-
note a series of substitutions in the sequence of §,, ...,
S, from H to H', where n=0. When the sequence of
redexes is omitted, the process is compactly described as
H-"H'

Definition 9 An L-application(or R-application) of a
production p: =(L, R, f) to a host graph H is a substitu-
tion H =St(L, R, S, H) (or St(R, L, S, H)), where S e
Rd(H, G).

Based on the above fundamental concepts, the defini-
tion of the CAGG is given as follows.

Definition 10 A context-attributed graph grammar
(CAGG)is a tuple(A, P), where A is an initial graph
(can also be viewed as a special case of a production
with an empty left hand side A, called an axiom) and P
a set of well-defined productions. For each production
p=(L,R,f) € P, one of the following two conditions
must be satisfied:

e The size of R is larger than that of L, i. €., \NL \ <
‘ Ny ‘ 5

o If [N . | = \NR |, then N, has more terminal nodes
than N, .

This definition imposes a syntactical constraint''!! on
each production of a CAGG to ensure that its member-

ship problem is decidable. In the sequel, we only focus
on well-defined productions and simply refer to them as
“productions”.

Definition 11 The set of sentential forms of a
CAGG gg: =(A, P)is Gr(gg) ={G |A " G}.

Definition 12 The language of a CAGG gg: = (A,
P), denoted as L(gg), is a subset of Gr(gg) such that
L(gg) ={GeGr(gg) | VneN,(nt(n) =terminal) }.

Similar to the conclusions drawn in Refs. [10 —11],
we have

Proposition 1 Given a CAGG gg: = (A, P) and a
nonempty graph H, whether H € L(gg) or not is decida-
ble.

Proposition 2 Given a CAGG gg: = (A, P) and a
nonempty graph H, H e L(gg) iff there exists a sequence
of redexes Rs such that H A,

Proposition 2 summarizes the relationship between
membership decidability and R-applications by showing
that a directed graph H being a member of a language
defined by a CAGG can be determined by attempting a
sequence of R-applications from H to the initial graph
A. Conversely, L-applications can generate all the graph
members of the language from A.

3 Graph Parsing

Graph parsing involves determining if a graph is syn-
tactically well founded by reducing it according to a pre-
defined graph grammar. The reduction is performed by
conducting a sequence of R-applications. The process of
parsing a graph H with respect to a graph grammar gg is
as follows: Search H to find a redex of any production p
in gg, and then perform an R-application of p to H; this
process iterates until no redex can be found in the resul-
ting graph, say H'. If H' is the initial graph of gg, the
parsing process succeeds, indicating that H is a valid
graph of gg. Otherwise, the above process repeatedly at-
tempts other possible sequences of redexes. H is invalid
only if it fails in all the possible attempts. The SFPA, the
parsing algorithm for the RGG''”', can be efficiently per-
formed in polynomial time under the assumption that the
underlying grammar is confluent. A sufficient condition
for deciding the confluence of graph grammars is also
given in Ref. [10].

3.1 Properties

This subsection defines some general concepts, and
concludes with several useful properties of the CAGG.
Then, an algorithm is developed for deciding whether a
set of productions is confluent.

Definition 13 A directed graph G is a merger of
graphs A and B, if

e A and B are subgraphs of G;

e VneN(neN,VneN,) NVecE, (ecE, Ve
eEp);

e Cm(A, B, G) =(N', E')is a non-empty graph;
where N' ={neN, |neN,AneN,},E ={ecE, |e
eE,NecE,}.

The set of mergers of two graphs A and B is denoted
by Mrg(A, B).

Context-attributed graph grammar framework for specifying visual languages 459

Definition 14 Let G be a merger of two directed
graphs A and B, p, and p, two productions, and A and B
isomorphic to p,. R and p,. R, respectively. G is reduci-
ble with respect to p, and p, if A e Rd(G, p,.R) ABe
RA(G,p,. R) = 3G, Gy, Gy, Gy (G G, 57 Gy
NG =G, b Gy NGy=Gp,).

Noticeably, the common subgraph Cm(A, B, G) of A
and B in G is isomorphic to a subgraph in p,. R and
symmetrically in p,. R, and we denote these two sub-
graphs as Im(Cm(A, B, G), p,. R) and Im(Cm(A, B,
G),p,. R)), respectively.

Theorem 1 Let G be a merger of two directed graph
A and B, p, and p, two productions, and A and B iso-
morphic to p,. R and p,. R, respectively. Then A
Rd(G, p,. R) ABeRd(G, p,. R) iff

oV neS(ci(n) =null)=in(n) CE Aout(n) CEg;

eV neS(ci(n) =up)=out(n) CEy;

eV neS(ci(n) =lp)=in(n) CE;
where S € {Im(Cm(A, B, G), p,. R), Im(Cm(A, B, G),
PR}

Proof Only if part. Consider the first case. Let S =
Im(Cm(A, B, G), p,-R), S =Im(Cm(A, B, G), p,. R)
and f,: Ng—N, and f,: E,—E, are a pair of bijections
between them(please note S=S'). Assume n e N, with
ci(n) =null and e' e E, with in (e') =f,(n). Assume
e’ ¢Ey, then ~Jee Eg(f,(e) =e¢'), since S and S’ are
the common subgraphs of p,. R and p,. R while ignoring
the attribute of context information on each node. So,
~deeckE, (f;(e) =¢’). By definition 7, A is not a re-
dex of p,. R because the edge in G which corresponds to
e’ is a dangling edge directing to A from G\A. A contra-
diction occurs. Hence, ¢’ € Ey, and e € E such that f,
(e) =¢'. Likewise, one can conclude that e € E; if ¢’
E, and out(e’) =f (n). The other two cases can be
proved in a similar way.

If part. Suppose that A and B are isomorphic to p,. R
and p,.R under two bijections f;: (N,UN;) —
(Ng, UNg,) and f,: (E,UE,)— (Ez UEg). Assume n
e N, An'" =f, (n) such that ci(n') =null \ Je e

E;,(in(e) =n \ out(e) =n). Then n e Cm(A, B, G),
otherwise e¢ € E;, does not hold. Consequently, n' e
Im(Cm(A, B,G),p,.R,). Let ¢’ =f,(e). According to
the premises, we have in(n') CE; A out(n') CEg, and
then e’ e E;. Therefore, e € E¢,4 5. » Which contradicts
the assumption e € E, ,. Hence, for any n € N, such that

n' =fi(n), (ci(n") =null A\ e E; ,(in(e) =n \ out
(e) =n)) holds. Similarly, = (ci(n’) =up A\ Je € E;,
(out (e) =n))and = (ci(n') =Ilp A Je € E,,
(in(e) =n)) can be concluded as well. By definition 7,
A € Rd (G, p,.R). Symmetrically, we have B e
RA(G, p,.R).

Corollary 1 Let G be a merger of two directed
graphs A and B, p, and p, two productions. If A e
Rd(G, p,. R) NB e Rd(G, p,. R), then dn e N such

that ci(n) #null, where S is defined as above.

Proof It is sufficient to consider only the case S =
Im(Cm(A, B, G), p,. R) . From definition 13, we obtain
\NS |=1. Assume n N with ci(n) = null, then in(n)
CE N\ out(n) CE, by theorem 1. Therefore, V C N,
where V={v|v=in(e,) Vv=out(e,), e, eout(n),e,
ein(n) }. Suppose~ v e V such that ci(n) # null(The
opposite assumption directly completes the proof).
Then, we iteratively conduct the above process until the
sole case occurs: S is a connected component of p,. R.
According to definition 5, the conclusion holds.

Theorem 2 Let G be a merger of two directed
graphs A and B. If G is reducible with respect to two
productions p, and p,, A € RA(G, p,. R) A B e Rd(G,
p,- R),and A" and B’ are graphs isomorphic to p,. L and
p,. L respectively, then 3 G'(G' is a merger of A’ and
B’) such that Cm(A, B, G) =Cm(A’,B', G').

Proof It is clear from definition 13 that Cm(A, B,
G) CA and Cm(A, B, G) CB. Since G is reducible with
respect to two productions p, and p,, and A € Rd(G,
p.-R)ANB e RA(G, p,. R), AG,, G, Gy, G, (G
‘G, »’G,, NG »°G, "G, N G,, =G,,), by
definition 14. So, BC G,. Since G, = (G\A) UA' =
(B\Cm(A, B, G)) UA',Cm(A, B, G) CA’. Therefore,
Cm(A,B,G) CCm(A’, B, G,). Because G 'G,, the
converse derivation G, " G also holds. Then we ob-
tain Cm(A’, B, G,) SCm(A, B, G) in the same way.
Consequently, Cm(A’, B, G,) =Cm(A, B, G). By the
symmetric property, we have Cm(A’, B, G,) =Cm(A’,
B', G,;) . Hence, Cm(A, B, G) =Cm(A’, B', G,;) .

This conclusion states that the prerequisite for the re-
ducibility for any merger G of the right graphs of pro-
ductions p, and p, is that, there is a merger G’ of the left
graphs of them such that Cm (p,.R, p,.R, G) =
Cm(p,. L, p,. L, G') when ignoring the context infor-
mation on p, and p,, which reveals the structural similar-
ity between a pair of reducible productions.

Definition 15 Let P be a set of productions. P is
confluent if for any p,, p, € P, A and B are directed
graphs isomorphic to p,. R and p,. R, respectively, and
for each G e Mrg(A, B), G is reducible with respect to
p, and p,.

Definition 16 Let gg: = (A, P) be a CAGG, and
Gr(gg) the set of sentential forms of gg. gg is confluent
if VGeGr(gg) N\pe PANVYSeRA(G,p. R) =G
=G " AL

The confluence property in Ref. [10] is also applica-
ble in the CAGG, and is given as follows.

Theorem 3 Let gg: =(A, P) be a CAGG. Then gg
is confluent if P is confluent.

3.2 Algorithm IsConfluent

Based on these properties, an algorithm for deciding
whether a set of productions is confluent is then devel-
oped. In the algorithm, the properties proved in theorem
1 and its corollary(denoted as C, and C, respectively),

460

Zou Yang, Zeng Xiaoqin, Han Xiuqing, and Zhang Kang

and theorem 2 are exploited to filter out those mergers
that do not simultaneously include redexes of produc-
tions p; and p; as early as possible, thus improving the
efficiency. The algorithm is as follows:

Algorithm IsConfluent
Input: A set of productions P ={p,, ...,p,};
Output: If P is confluent, then return “Yes”, and “No”
otherwise;
{
for all p, e P, all p; e P,i # j{//loop 1
Cm = common subgraphs of p,. R and p;. R satisfy-
ing C,;
if(Cm #null) {
Transform each subgraph in Cm into a merger,
and if it satisfies C,, store it in Mrg;
if(Mrg #) {
Cp=(p: LNp;. L) N(p;. RNp;. R);
if(Cp = null) return “No”’;

else {
for all S e Mrg//loop2
if—= (S is reducible) return “No’’;
}
}
}
return “Yes”;

The time complexity of algorithm IsConfluent is ex-
ponential in terms of the maximal number of nodes in
the right graphs of the productions in P. In practice,
however, the number of productions in a graph grammar
and the number of nodes in a production’s right graph
are usually small. So, the exponential time complexity is
actually not a crucial problem for the application of the
algorithm.

4 Comparison with Related Graph Grammars

Similar to textual grammars, a context-sensitive graph
grammar is more expressive than a context-free graph

(b)
Fig.4 A production comparison among L.GG, RGG and CAGG. (a) An LGG production; (b) An RGG production; (¢) A CAGG production

grammar. Here, comparisons are conducted between
CAGG and other two graph grammars, LGG'” and
RGG'"”, which are the most prominent context-sensitive
graph grammars proposed so far.

As to the treatment of context information, the LGG
views the common subgraph of the left graph and the
right graph of a production as context elements, and in-
troduces label wildcards to denote them. The explicitly
specified context elements may increase the complexity
of searching redexes in a host graph. Besides, it is diffi-
cult to exactly identify what each wildcard stands for in
complex practical domains. However, the CAGG simply
introduces an attribute to each node to implicitly identify
its context information along with an embedding rule to
resolve the embedding problem. We, therefore, believe
that the CAGG is more succinct than the LGG.

The RGG introduces a two-level node structure where
the first level is a super vertex and the second consists of
several small vertices which are embedded in the first
level. Both a vertex and a super vertex can be a connect-
ing point of edges. With the node structure, an ordinary
graph, when transformed into a node-edge format,
looks complex. It is somewhat tricky to put suitable ver-
tices into a node and appropriately arrange edges con-
necting them during the transformation. In addition, the
RGG uses a marking mechanism to identify some verti-
ces in a production with unique integers. These identi-
fied vertices along with the edges connected to them will
be preserved when the production is applied. But which
vertices should be marked and which should not are not
so obvious to determine. CAGG introduces only an at-
tribute for each node to specify its context information
and can be directly applied to the specification of ordi-
nary graphs. Therefore, compared with the RGG, the
CAGG is more intuitive and succinct.

A graph production specified in the form of LGG,
RGG, and CAGG, respectively, is shown in Fig. 4.

(c)

Context-attributed graph grammar framework for specifying visual languages 461

Strict comparison of expressive power among context-
sensitive graph grammars is impractical, and no such
conclusions have yet been drawn between LGG and
RGG. An observation in this regard, however, has been
made that CAGG can be applied to all the existing ap-
plication cases specified by LGG and RGG'*® """

5 Conclusion

This paper presents a novel context-sensitive graph
grammar framework, called the CAGG. The CAGG pos-
sesses two qualities crucial to the application of graph
grammar theories: succinctness and intuitiveness, making
it effortless to specify context-sensitive graph gram-
mars. Moreover, several properties of the CAGG are
provided, and then an algorithm based on these proper-
ties is developed to decide whether a set of productions
is confluent. These properties lay the foundation for fur-
ther research on more efficient parsing algorithms espe-
cially for the CAGG.

References

[1] Ferrucci F, Tortora G, Tucci M, et al. A predictive parser for
visual languages specified by relation grammars [C]//Proc
IEEE Symposium on Visual Languages. St. Louis, Missouri,
USA, 1994: 245 —252.

[2] Wittenburg K, Weitzman L, Talley J. Unification-based
grammars and tabular parsing for graphical languages [J].

Journal of Visual Languages and Computing, 1991, 2(4):
347 -370.

[3] Marriott K. Constraint multiset grammars [C]//Proc IEEE
Symposium on Visual Languages. St. Louis, Missouri, USA,
1994: 118 —125.

[4] Rozenberg G. Handbook on graph grammars and computing
by graph transformation: foundations| M] . World Scientific,
1997:1 - 94.

[5] Drewes F, Hoffmann B, Janssens D, et al. Adaptive star
grammars [C]//ICGT2006, LNCS 4178. Berlin: Springer,
2006: 77 —91.

[6] Rekers J, Schiirr A. Defining and parsing visual languages
with layered graph grammars [J]. Journal of Visual Langua-
ges and Computing, 1997,8(1):27 —55.

[7] Bottoni P, Taentzer G, Schiirr A. Efficient parsing of visual
languages based on critical pair analysis and contextual lay-
ered graph transformation [C]//Proc IEEE Symposium on
Visual Languages. Seattle, Washington, USA, 2000: 59 —60.

[8] Kong J, Zhang K. Parsing spatial graph grammars [C]//
Proc IEEE Symposium on Visual Languages and Human-
Centric Computing. Rome, Italy, 2004:99 —101.

[9] Minas M. Parsing of adaptive star grammars [C]//Proc 2nd
International Workshop on Graph and Model Transforma-
tion. Brighton, UK, 2006,4:1 — 15.

[10] Zhang D Q, Zhang K, Cao J. A context-sensitive graph
grammar formalism for the specification of visual languages
[J]. The Computer Journal,2001,44(3): 187 —200.

[11] Zeng X, Zhang K, Kong J, et al. RGG + : an enhancement to
the reserved graph grammar formalism [C]//Proc IEEE
Symposium on Visual Languages and Human-Centric Com-
puting. Dallas, TX, USA, 2005:272 —274.

— IR RALIES E TXEEH B ESOEESR

4k ra'

wped' HA5E

RoOE

(" TR SIS NEAR B T2, % 210098)
C #8 L B MR R 350 o O SEAUE 3 &, £ B 48 L A 75080-3021)

WEAHANBNCAG ETILAMXE RO AENCE TELERRKAN, 3BT —AA#He) ETFLAELE Lk
0 KAER . T B AL e B ik CAGG. 3% k% & A& Ko £ F 13 8 20 3 A8 % 45 8 09 £ F &Mk
RN, f Bt —F 547 T ARt CAGG = A X S0 A e, A TR TERZEXESH AL
Fok , N A SR E RS EEE R T A @id 5 e LT AKX A AT e 94 7T 47, CAGG B L
MR E A M Efe AN, B £3E T HE ST p R 2| TAAE S R AR,

R TAAIE S B Uk BT XA B R 04 5%

FE 43S TP301.2

