Journal of Southeast University (English Edition)

Vol. 24, No. 4, pp. 462 —467

Dec. 2008 ISSN 1003—7985

Recursive bisection placement algorithm with the predicted wirelength

Hao Jie

Ma Hong

Peng Silong

(National ASIC Design Engineering Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China)

Abstract: To obtain a better placement result, a partitioning-based
placement algorithm with wirelength prediction called HJ-P1 is
presented. A new method is proposed to estimate proximity of
interconnects in a netlist, which is capable of predicting not only
short interconnects but long interconnects accurately. The
predicted wirelength is embedded into the partitioning tool of
bisection-based global placement, which can guide our placement
towards a solution with shorter interconnects. In addition, the
timing objective can be handled within the algorithm by
minimizing the critical path delay. Experimental results show
that, compared to Capol0.5, mPL6, and NTUplace, HIJ-PI
outperforms these placers in terms of wirelength and run time.
The improvements in terms of average wirelength over
Capol0. 5, mPL6 and NPUplace are 13%,3%, and 9% with only
19%, 91%, and 99% of their runtime, respectively. By
integrating the predicted wirelength-driven clustering into
Capol0. 5, the placer is able to reduce average wirelength by
3% . The timing-driven HJ-Pl can reduce the critical path delay
by 23% .

Key words: hierarchy; interconnect; placement; VLSI circuit;
wirelength prediction

Placement is an important step in the overall IC design
process in deep submicron technologies. A lot of algo-
rithms'"™ have been proposed in the past 30 years, including
partitioning-based methods"”™', analytical methods'”, itera-
tive methods, etc. Partitioning-based placement algorithms
determine cell locations by recursively dividing an initial re-
gion with successive bisections" ™ or quadrisections'. Ad-
vances in partitioning research have provided a number of
fast algorithms which produce extremely good results.

The placement problem can be driven by different objec-
tives, such as timing, routability, thermal distribution, or a
combination of them. The classical placement objective
function is the total wirelength, which correlates well with
global routing resource demand. Interconnection prediction is
very important for early feasibility studies in design flow.
During the past two decades, different wirelength prediction
approaches have been proposed because of the need for early
interconnect optimization in the design flow to achieve tim-
ing closure. Rent’s rule!” has been a basic tool to estimate
the wirelength'”™ . In Refs. [9 — 11], wirelengths are esti-
mated based on circuit characteristics. Most of the estimation
techniques provide estimates of just the average wirelength.
We develop an individual wirelength prediction based on

Received 2008-05-12.

Biographies: Hao Jie(1981—), male, graduate; Peng Silong(corresponding
author) , male, doctor, professor, silong. peng@ ia. ac. cn.

Foundation item: The National Key Project of Scientific and Technical
Supporting Programs (No. 2006BAK07B04) .

Citation: Hao Jie, Ma Hong, Peng Silong. Recursive bisection placement al-
gorithm with the predicted wirelength[J]. Journal of Southeast University
(English Edition), 2008, 24(4) : 462 —467.

circuit characteristics to estimate the wirelength of a layout
design in advance before placement. In fact, the final wire-
lengths depend on placement algorithms. Wirelength predic-
tions that are accurate for one placement algorithm may be
inaccurate for another. In our placement tool, the predicted
wirelength as a main optimal objective is embedded into
placement flow. Experimental results show that the wire-
lengths of final placement can trend to predicted wirlengths.

In this paper, we propose a novel partitioning based place-
ment algorithm for standard cells. The major contributions of
this paper can be summarized as follows:

1) We find that the basic circuit characteristics(e. g. net
degree and net area) and node level can be used to predict
wirelengths in the final layout. These prelayout measures
demonstrate good correlations with postlayout interconnect
lengths. We propose to couple the wirelength predictions
with our placement flows.

2) In conventional partitioning-based placements, partitio-
ning tools are typically done with the min-cut objective. In
order to reduce the lengths of intra-cluster interconnects, we
introduce a new objective function that incorporates a pre-
dicted wirelength component for partitioning tools. Experi-
ments show that we can obtain a better wirelength result
with little loss in time.

1 Overall of Placement Tool

Fig. 1 shows that our placement framework consists of
four stages. We predict individual wirelengths for all nets
based on circuit characteristics in stage 1. In stage 2, we par-
tition both the chip region and the circuit netlists recursively
by horizontal and vertical cut lines. In the partitioning
phase, wirelength-driven clustering is performed to reduce
the wirelengths of intra-cluster interconnects. After cluste-
ring, for better min-cut, wirelength-driven refinement is exe-
cuted without loss of wirelength quality. The subcircuits af-

Individual wirelength
prediction

|

Recursive bisection-based

global placement
Wirelength-driven partitioning
Wirelength-driven
Wirelength-driven clustering clustering
Wirelength-driven refinement
Bin-based swapping | S~
Wirelength-driven
* refinement

Detail placement
Legalization
Local swapping

e

Fig.1 Framework of our placement tool

Recursive bisection placement algorithm with the predicted wirelength 463

ter partitioning are assigned to rectangular bins. A bin-based
simulated annealing is performed to improve the current
placement. The final step simply spreads overlapped cells
and makes local improvements to obtain the detailed place-
ment.

2 Wirelength Prediction

In this section, we explain our wirelength prediction tech-
nique in detail. A circuit netlist can be modeled by a hyper-
graph H(V, E) with a node(cell) set V = {v, \ i=1,2,..,
n} and a hyperedge (net) set E = {e, \j: 1,2, ...,m}. Each
net e; is a subset of V with cardinality \ e; | =2. An edge (s,
1) € e, is an output of source node s and an input of sink
node ¢, which is a subset of the hyperedge. The degree of the
node v,, denoted by d(v;), is the number of nets incident to
it. The degree of net e;, denoted by d(e;), is the number of
nodes incident to it. Each node is associated with an area
cost, area (v,). Net area is the total area of nodes belonging
to that net, namely, area (e;) = z area(v,) .

Individual wirelength is dependent on three factors in this
paper: 1) The net degree and the net area, which are the ba-
ses of the wirelength; 2) The shape distribution of a node
level; 3) The range of a node level. Wirelength prediction is
performed in three phases in which we calculate three differ-
ent weights for all the nets according to the above three fac-
tors. The final predicted wirelength is obtained by combining
these weights.

2.1 Basic wirelength

Obviously, the net with a larger net degree and net area
tends to have a larger fan-out range. It is intuited that larger
fan-out nets usually correspond to longer net lengths. We use
net degree and net area of net as its basic wirelength. The
area factor of net e is computed by

area(v,)

A = — 1
(e) Z (o) (D
The basic wirelength of net e is the combination of the ar-
ea factor and the number of nodes belonging to the net and
is given as
A(e)

d(e
Lbasic(e) :1 +T+#

max max

(2)
where A is the largest node area amongst all nodes; d_,, is
the largest net degree over all nets.

2.2 Shape distribution of node level

Define level (v), the level of node v, as the maximum
topological depth over all directed paths beginning at a PI
(primary input) and terminating at node v. num _level(v) is
the number of nodes at level(v). Fig. 2 shows the shape of
the rd73 circuit in the MCNC (Microelectronics Center of
North Carolina) benchmark. In Fig. 2, the number of nodes
at level 1 is maximal and the placement tool needs more
sites for the nodes at level 1. So the wirelength of nets with
nodes at level 1 may dilate during the placement phase. The
nets connecting the nodes with larger num _levels will have
larger fan-out ranges in the final layout. The factor DNL(¢)

used to measure the dilatability due to the shape distribution
of node levels for net e can be calculated as

num_ level(v,)

DNL(e) = BT (3)

viee

Level 0

Level 14

Level 2

Level 3

Level 4

Level 5

Level 6 1
Fig.2 Shape distribution of rd73

For example, referring to Fig. 3, num_ level (x,) =
num _level(u#) =1, num_level (x,) = num _ level (x,)
num _level(x,) = num_level(x,) =5, num_level (x,) =
num _level(x,) =2.

Level 0 %o

Level 1

Level 2

X1 %) X3 X4 X5

Level 3
X6 X7
Fig.3 An example of node level

Then, we can obtain DNL(u, x,) =1, DNL(u, x,, x,) =
3.67,DNL(u, x;) =... =DNL(u, x;) =3, DNL(u, x;) =
1.5, DNL(u, x,) =3.5.

Since DNL(u, x,, x,) is larger than others, it indicates that
net (u, x,, x,) has a stronger dilatability than others.

2.3 Range of node level

If node levels are within a limited range, the wirelength of
the output net will likely to be less than that of a net with
widely distributed node levels. To capture the ranges of the
node levels of net e, we define the factor RNL(e) as

level(v,) —level(v))
d(e)

RNL(e) = Y, (4)

vyvEe
i#j

If the nodes connecting the net have the same node level,
the RNL factor of the net is 0. In Fig. 3, from our defini-
tions, RNL(u, x,) =1, RNL(u, x,) =2. That is, by the met-
ric, net (u, x,) has a longer wirelength than net (u, x;).
Note that sometimes the RNL and DNL are approximately
“orthogonal”. When the RNL factor of a net is 0, the DNL
factor of the net may be very large.

The predicted result of the apex2 circuit is shown in
Fig. 4. In these figures, on the x-axis are net id and on the y-
axis are net lengths. The solid line represents predicted wire-

464

Hao Jie, Ma Hong, and Peng Silong

lengths, and the points represent the actual wirelengths (in
percentages) in the final placement using our HJ-Pl. The
shape distribution of node level, DNL, and the range of node
level, RNL, in estimation of circuits are presented in Figs. 4

0.030
+ Predicted wirelength

0.025 — Actual wirelength
L
$ 0.0
%D 0.015
£
& 0.010

0.005

0 400 800 1200 1600 2000
Net id
(a)

0.040

0.035 + Predicted wirelength
0 0 ' 030 — Actual wirelength
® 0.
2
0
3
B
=

(=]
[=]
et
(=]

0 400 800
Net

(b) and (c). As shown in Fig. 4, wirelengths of long inter-
connects increase rapidly with an increase in RNL. DNL is
more efficient for short interconnects.

+ Predicted wirelength
— Actual wirelength

Wirelength/ %

0 400 800 1200 1600 2000

Net id
(b)
0.025
M + Predicted wirelength

0.020 — Actual wirelength
R
=
2
=
E
=

+ Predicted wirelength
— Actual wirelength

1200 1600

id

2 000

(e)

Fig.4 Prediction results of apex2. (a) L, vs. actual wirelength; (b

pre
nectivity vs. actual wirelength; (e) Edge separability vs. actual wirelength

2.4 Individual wirelength

The wirelength of net e, L, is its basic wirelength
L,..(e) adjusted by DNL(e) and RNL(e):

l,.(€) =axLy(e) xDNL(e) +b x L, (e) x RNL(e)
(5)
Lo = (6)

max

where a, b are parameters that control the trade-off between
DNL and RNL; [, is the largest [(e) amongst all nets.
Most proposed wirelength predictions have poor results
for long interconnects. Figs. 4 (d) and (e) are the predicted
results using connectivity and edge separability''"™"", which
are not sensitive for long connections. Fig. 4(a) shows that
our approach has good predictions for long interconnects.

3 Recursive Bisection-Based Global Placement

Recursive bisection based placement algorithms seek to
decompose a given placement instance into smaller in-

) DNL vs. actual wirelength; (c¢) RNL vs. actual wirelength; (d) Con-

stances by subdividing the placement region, assigning cells
to subregions, reformulating constraints and cutting the
netlist (see Fig. 1). The top-down placement process can be
viewed as a sequence of passes where each pass examines
all blocks and, if required, divides them into two smaller
blocks using min-cut partitioning. Such netlist decomposi-
tion is typically done with the min-cut objective. A novel
clustering-refinement multilevel partitioning algorithm by
incorporating a min-wirelength objective is proposed in this
paper. The global placement algorithm is as follows:

GLOBAL . PLACEMENT (H(V, E), Layout)//Q: the
queue of placement bins
While bin size is big enough
do QO—a bin;
Choose a (horizontal or vertical) cut-line for the
bin;
Partitioning attempts to split each bin roughly in
half;
Build partitioning hypergraph from netlist and cells
contained in the bin;
Partition the bin into smaller bins using WL _PAR-

Recursive bisection placement algorithm with the predicted wirelength 465

TITIONING(H,(V,, E)));
//H(V, E,)is a sub-hypergraph of H(V, E)
QO<«—each child bin;
for all finest bins//bin-basedo swapping
do swap two bins;
if HPWL increases
then undo swapping;

WL _PARTITIONING(H(V, E))
for e e E//clustering phase
do if the area of partition<area _th && the number of
all cells<<num _th
//area _th is the area threshold; num th is the minimal
specified number of cells after clustering
then Cluster the cells of net e in a nonincreasing net
weight order;
Initial random bisection;
for v e partition bounder//refinement phase
do Compute g, =AL, +(1-2)g,;
Choose cell move according to FM-scheme;

3.1 Wirelength-driven clustering

The nets are initially sorted in a nonincreasing net weight
order which is computed as the predicted wirelength, L.
The nets of the same weight are sorted in a nondecreasing
net area order. Then, the nets are visited in that order and
for each net that connects cells that have not yet been
grouped, the cells are grouped together. Thus, this scheme
gives preference to the nets that have large weight. After all
of the nets have been visited, the groups of cells that have
been matched are contracted together to form the next level
coarser netlist. The cells that are not parts of any contracted
nets are simply copied to the next level coarser netlist.

3.2 Timing-driven clustering

In addition, timing objectives can be handled within our
algorithm by minimizing the critical path delay. The critical
path delay can be determined by computing the arrival
time, iteratively, making use of the following equation:

te Pl

0
ARR(?) = {max {ARR(s) +d(s, 1)} otherwise (7)

(s,0) eE

where d(s, t) is the delay of edge (s, t). The critical path
delay is

T= max ARR(1) (8)

Similarly we can also compute the required arrival time
for each node using the following equation:

s e PO

T
REQ(s) = { min {ARR(?) —d(s, 1)} otherwise

(s,0) ek
(9

We can now compute the slack value for each edge,
which measures how much additional delay can be added to
an edge without increasing the critical path delay of the
whole circuit. The slack of a given edge (s,) can be com-
puted as

slack(s, 1) =REQ(f) — ARR(s) —d(s, 1) (10)

where d(s, t) =r(s,t) (c(s,t)/2 +c(T,)), c(s, t) =
(ew(s, t) +c)I(s, 1), r(s, t) =r (s, t)/w(s, 1), 1(s, 1) =
L,.(e)/d(e). w(s,1),c,, c,and r, are wire width, area ca-
pacitance, fringing capacitance and resistance for unit-width
wire, respectively; T is the subtree rooted at v; c(T,) is
the capacitance of a dc-connected subtree in T, rooted at

T, ’s root. Finally, according to Eq. (10), we can obtain the
net weight with timing objective:

weight(e) =1 - 3 S1ack(s.0)

(s, ee Smux

(1D

where s, is the largest slack sum over all nets. For optimi-
zing timing objectives, as the net weight, weight(e) instead
of L, is embedded into the clustering phase. The net with
small slack will be protected by the timing-driven cluste-
ring, which can effectively minimize critical path delay dur-

ing placement.

3.3 Wirelength-driven refinement

In the refinement phase, the FM algorithm'™ is used to

reduce the cutsize. We change the original gain of FM by
introducing a predicted wirelength objective to reduce the
degeneration of the final wirelength. The wirelength-aware
gain of FM swapping is given as

gy =AL, +(1-2)g, (12)

where A is a parameter that controls the trade-off between
wirelength and the original gain of FM, which is less than 1
and larger than 0.

3.4 Bin-based swapping

After clustering for minimizing the wirelengths of intra-
partition interconnects, bin-based simulated annealing is
conducted to find a good location for each partition to be
placed in, thus, minimizing the total wirelength between
bins. There are three types of moves in bin-based simulated
annealing: horizontal switch, vertical switch, and diagonal
switch. These moves switch two adjacent bins.

4 Detail Placement

In the detailed placement step, overlaps between cells
have to be resolved to obtain a legal placement. When pla-
cing cells to remove overlaps, we have to consider two con-
flicting factors: the total wirelength and the legality of re-
sult. We use a greed heuristic to obtain a legal placement,
while the local swapping tries to reduce the wirelength of
the placement.

After global placement, we divide each row in the place-
ment region into placeable segments based on the overlap of
the blockages with the row. We now use a greedy heuristic
to bring every row in the placement region to within its ca-
pacity by moving the standard cells. Once the rows have
been brought under capacity, we move the cells among the
placeable segments to satisfy their respective capacities. The
cells are then assigned to legal positions within each seg-
ment.

After all overlaps are removed, greedy local improvement

466

Hao Jie, Ma Hong, and Peng Silong

is performed. We try to switch adjacent standard cells to see
if total wirelength can be improved. This step will cure the
wirelength loss caused by the blind cell spreading step of
legalization. For each row, all the bins from left to right are
traversed and an attempt is made to place in the bin onto
the site array. If there are blocked sites, we ignore it and go
to the right side of the chunk of blocked sites.

5 Experiment

Our placement algorithm is implemented in C program-
ming language and compiled with gcc 4.0 on a Linux PC
with an Intel Pentium [V1.5 GHz CPU and 768 MB memo-
ry. These algorithms are tested using a set of benchmarks
published in ISPD2002, ISPD2005, ISCAS89 and PEKO. In
the first experiment, we compare HJ-Pl with three well-
known academic placement tools, namely Capol0. 5",
mPL6' and NTUplace'” . Moreover, the wirelength-driven
clustering algorithm is an individual soft package which can

embed other open source tools. For the second experiment,
we integrate the wirelength clustering with Capol0. 5 due to
its code availability. Our wirelength prediction tool esti-
mates only HPWL in all the experiments. For the last exper-
iment, we compare the timing-driven HJ-P1 with the origi-
nal HJ-PL.

5.1 Comparison with other placers

For all experiments, we give an average of 10 runs and
use the ISPD2002 benchmarks with 20% total white-space
and random pad locations. The statistical information of
benchmarks is listed in Tab. 1. Tab. 1 shows that HJ-P] ob-
tains a HPWL improvement of 13% versus Capol0.5 and
is 5.24 times faster than CapolO.5. The runtime of Ca-
pol0. 5 for the ibml16 circuit is very long. HJ-P1 (WL) re-
duces runtime by 10% and 9% over mPL6 and NTUplace
with 3% and 1% shorter wirelengths, respectively.

Tab.1 The resulting HPWL and runtime for different placers

Circuit scell HJ-P1 Capol0. 5 mPL6 NTUplace
HPWL/(10°um) Time/s HPWL/(10°um) Time/s HPWL/(10°yum) Time/s HPWL/(10°yum) Time/s
ibm01 12752 2.02 257.17 2.54 1035. 84 2.12 615.38 2.23 97.4
ibm02 19 601 4.24 315.32 5.63 1585.57 4.63 765. 09 4.74 165. 1
ibm07 45926 9.35 1131. 41 11.13 1 656.26 9.68 1707. 49 10. 24 993. 8
ibm08 51309 11.19 2483.09 13.55 5 006. 82 11.22 2 550. 87 11.99 798. 6
ibm09 53395 12.19 2153.11 14.33 1983.73 12.08 2777. 82 12.30 959. 8
ibm10 69 429 28.85 3031.21 29.28 3701. 04 28.85 1350.3
ibml1 70 558 17. 80 3069. 43 20. 02 6 835.09 17.43 3569.79 17.79 1644.9
ibm12 71076 31.97 2324.90 38.91 4347.09 32.77 2119. 54 32. 86 1231.2
ibm16 183 484 51.49 5485.23 61.70 98 889. 93 53.45 5 646. 05 55.49 6286. 4
ibm18 210 613 40. 17 10 174. 31 44.78 22 158.01 41.98 10 152. 01 51.17 17 264. 3
Ratio 1 1 1.13 5.24 1.03 1.10 1.09 1.01

5.2 Integration with Capo

We integrate our wirelength-driven clustering with
Capol0. 5, which is based on min-cut placement tech-
niques. In addition, the wirelength-driven clustering using
Connectivity""™"" is embedded into Capol0. 5 as a compari-
son with our method. Tab. 2 shows the results without and
with wirelength-driven clustering based on the PEKO

benchmark with 10% total white-space, uniform cell sizes,
and random pad locations, and the ISPD2005 benchmarks.
From Tab. 2, the original CapolQ.5 averages 3% more
wirelength than Capol0Q.5 with wirelength-driven cluste-
ring, and runs faster. The experimental results also reveal
the fact that our wirelength prediction is superior to Con-
nectivity for placement quality.

Tab.2 HPWL and runtime comparison of original Capo and Capo with wirelength-driven clustering

Circuit Capol0. 5(WL) Capol0. 5(connectivity) Capol0. 5
HPWL/(10° um) Time/s HPWL/(10° jum) Time/s HPWL/(10° um) Time/s
peko01 1.43 671.42 1.56 674.78 1.57 514.38
peko05 4.11 1423. 34 4.97 1 400. 17 4.09 1138.97
pekol0 14. 11 3978. 12 15.31 4309. 12 14.52 3823.33
pekol5 45.92 39 871. 44 44. 88 40 671. 02 46. 81 38 625. 60
pekol8 38.73 12 150. 71 40.01 11098. 15 39. 64 11 427. 60
adaptecl 87.43 26 587. 89 88.01 27 564.77 88.72 25 065. 40
adaptec2 96. 89 33 158. 54 98.90 32 453.98 98.25 32 530. 90
bigbluel 101. 14 40 138.23 104. 65 41453.01 106. 85 39 549. 60
Ratio 1 1 1.02 1.01 1.03 0.96

5.3 Timing-driven HJ-PI

The results without and with timing-driven clustering are
shown in Tab. 3. After placement (using the ISCAS89 bench-
mark), we perform global and detailed routing, RC extraction

and timing analysis using commercial tools. The electrical
parameters have been chosen to resemble a typical 90 nm
process. Tab. 3 shows that HJ-P1(T) with timing-driven clus-
tering reduces the critical path delay by about 23% .

Recursive bisection placement algorithm with the predicted wirelength

467

Tab.3 Critical path delay comparison of original
HIJ-P1 and HJ-P1 with timing-driven clustering

Critical path delay/ns

Circuit
HJ-PI(T) HJ-P1
C6288 14.21 18. 34
C7552 18.77 23.90
59234 27.96 32.89
S13207 26.33 37.41
S15850 35.47 39. 19
Ratio 1 1.23

6 Conclusion

A new method for standard cell placement is presented in
this paper. The proposed method is based on a new min-cut
partitioning with wirelength-driven clustering and refine-
ment. Experiments show that we can obtain shorter HPWL
than Capo, mPL and NTUplace. Our tool is also capable of
doing power-driven placement in the future.

(1]

(2]

(3]

[4]

References

Adya S N, Markov I L. Combinatorial techniques for mixed-
size placement[J]. ACM Transactions on Design Automation
of Electronic Systems, 2005,10(1):58 —90.

Doll K, Johannes F M, Antreich K J. Iterative placement im-
provement by network flow methods [J]. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-
tems, 1994,13(10): 1189 — 1200.

Roy J A, Papa D A, Ng A N, et al. Satisfying whitespace re-
quirements in top-down placement[C]//Proc of Internation-
al Symposium on Physical Design. San Jose, California,
USA: IEEE Press, 2006: 206 —208.

Wang M, Yang X, Sarrafzadeh M. Dragon 2000: fast stand-
ard-cell placement for large circuits[C]//Proc of the Inter-
national Conference on Computer-Aided Design. San Jose,

[5]

[6]

[7

—

(8

—

[9

—

[10]

[(11]

[12]

[13]

California, USA, 2000: 260 —263.

Vygen J. Algorithms for large-scale flat placement[C]//
Proc of Design Automation Conference. Anaheim, Califor-
nia, USA, 1997:746 —751.

Chan T, Cong J, Joseph R, et al. mPL6: enhanced multilevel
mixed-size placement[C]//Proc of International Symposium
on Physical Design. San Jose, California, USA, 2006: 212 —
214.

Donath W E. Placement and average interconnection lengths
of computer logic[J]. IEEE Transactions on Circuits and
Systems, 1979,26(4):272 - 277.

Caldwell A E, Kahng A B, Mantik S, et al. On wire length
estimations for row-based placement[J]. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-
tems, 1999,18(9) : 1265 — 1278.

Balachandran S, Bhatia D. A priori wirelength interconnect
estimation based on circuit characteristics[J] . IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, 2005, 24(7) : 1054 —1065.

Hu B, Malgorzata Marck-Sadowaka. Wire length prediction
based clustering and its application in placement[C]//Proc
of Design Automation Conference. Anaheim, California,
USA, 2003: 800 — 805.

Liu Q, Malgorzata Marck-Sadowaka. Semi-individual wire-
length prediction with application to logic synthesis [J].
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems,2006,25(4):611 —624.

Fiduccia C M, Mattheyses R M. A linear-time heuristic for
improving network partitions[C]//Proc of Design Automa-
tion Conference. Las Vegas, Nevada, USA, 1982: 175 —
181.

Chen Tung-Chieh, Hsu Tien-Chang, Jiang Zhe-Wei, et al.
NTUplace: a ratio-partitioning-based placement algorithm for
large-scale mixed-size designs [C]//Proc of International
Symposium on Physical Design. San Francisco, California,
USA, 2005: 236 —238.

M& KN _— S HREE

(b BAH B2 8 S ALFT I AT R4 R 4R R S TARBE s, 6 100190)

EA >
2 /‘\3‘3‘

BE:ATARXRSHARE, B —FELTRME K6 =5 B 5k HI-PL iz Fokab K 42 2% & AR R3F 6
FRm g R, @B TR KK FNB A BAER T AE kT AT R A B e TR S AW K Bk 2 R AR E A

A Ry AR P AL E R LR i R BB R K g B 8. B oh, iz 3

Wt RGBT 2 1T B T BT

B aT AL RORE. S5 £ P, 5 I A 49 Capol0. 5, NTUplace #= mPL6 3% 48k, 3% A By 5ok T & 7 i N & &
13% ,3% ,9% . ¥ 3R £ K B 474 % %] Capol0.5 W T & K 3% . 7 A BF 53K 30 2 A6 49 HI-P1 =T VAR /s X4
IR IE 23% £ 4.
KR : R Tk 2550 oy s A RALBE SR e 35 2k KT
hE 4 %S . TP391. 72

