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Fast estimation of fundamental matrix based on stripe constraints
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Abstract: In order to improve the performance of estimating the
fundamental matrix, a key problem arising in stereo vision, a
novel method based on stripe constraints is presented. In contrast
to traditional methods based on algebraic least-square algorithms,
the proposed approach aims to minimize a cost function that is
derived from the minimum radius of the Hough transform. In a
structured-light system with a particular stripe code pattern, there
are linear constraints that the points with the same code are on the
same surface. Using the Hough transform, the pixels with the
same code map to the Hough space, and the radius of the
intersections can be defined as the evaluation function in the
optimization progress. The global optimum solution of the
fundamental matrix can be estimated using a Levenberg-
Marquardt optimization iterative process based on the Hough
transform radius. Results illustrate the validity of this algorithm,
and prove that this method can obtain good performance with
high efficiency.

Key words: fundamental matrix; structured-light; stripe code
pattern; stereo vision

he computation of the fundamental matrix existing be-
T tween two views of the same scene is a common task in
several applications in computer vision, including calibration
and reconstruction, visual navigation, and visual servoing'".
The fundamental matrix is important because it represents
succinctly the epipolar geometry of stereo vision. Indeed, the
matrix provides relationships between corresponding points
in two views. Moreover, for known intrinsic camera parame-
ters, it is possible to recover the essential matrix from the
fundamental matrix and, hence, the camera motion between
the views.

Several techniques have been developed for the estimation
of the fundamental matrix from point correspondences, such
as the linear criterion, the distance to epipolar lines criteri-
on, and the gradient criterion'”™ . The first one is a least-
squares technique minimizing the algebraic error. This ap-
proach has been proven to be sensitive to image noise, and it
does not consider the fact that the rank of the fundamental
matrix must be equal to 2. The other two techniques take in-
to account rank constraints and minimize a more indicative
distance, the geometric error, in the seven degrees of free-
dom of the fundamental matrix. These result in nonconvex
optimization problems that present local solutions in addition
to global ones. Hence, the solution found via numerical pro-
cedures is affected by the choice of the starting point of the

minimization algorithm'>™® . Generally, this point is chosen
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as the estimate provided by the linear criterion and forced to
be singular by setting the smallest singular value to zero, but
this choice does not guarantee to find the global minimum.

In this paper, we present a new method for the estimation
of the fundamental matrix. It consists of a constrained least-
squares technique in which the rank constraints on the matrix
are ensured by the constraints of the scene. In this way, we
impose the singularity of the matrix a priori instead of forc-
ing it after the minimization procedure as in the case in the
linear criterion. Our aim is to define this linear constraint as
the cost function in the structured-light system for improving
the performance of calculation. In order to find the linear
constraints, we start by showing the structured-light system
using stripe code patterns. Then, we reformulate the estima-
tion problem so that it can be developed in the Levenberg-
Marquardt optimization algorithm. In the end, we provide
experimental results showing that our approach leads to a
more accurate estimate of the fundamental matrix.

1 Stripe Code Structured-Light System

In a structured-light reconstruction system, as shown in
Fig. 1, the camera A takes images of an object illuminated
by a set of light patterns from the projector B. The shape of
the object is computed from the deformation of the projected
grid. In our system, the camera and the projector are both
uncalibrated, and the inner parameters of the projector are
constant during the process of reconstruction while the inner
parameters of the camera are volatile. Under the assumption
of the linear and center projection, the projector can be mod-
eled as a virtual pinhole camera with fixed inner parameters,
and the single view system can be formulated using epipolar
geometry. Consequently, the fundamental matrix is the map-
ping relation from the projector to the camera.

Fig.1 A structured-light system

In order to reduce the noise of shadow in the scene, as
well as extend the robustness of the image matching algo-
rithm, we consider the appearance of a scene illuminated by
a sequence of patterns using the similarity Manchester code.
The system is based on the assumption that the environment
background light is fixed during the project processing of the
pattern images, which limits the scanning time. The assump-
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tion also provides a set of rules for designing an illumination
pattern as follows: 1) The width of pattern lines is constant;
therefore, the histogram of the adjacent images is similar,
and the same algorithm of the image process can be valid; 2)
The stripe codes are simple enough for analysis; 3) The
stripe codes of adjacent pattern lines are different enough
from the normal scene shadow for pattern identification; 4)
The stripe boundary codes instead of the stripe codes to con-
vey information between projector and camera are used,
since at most two pixels of a given frame can be used to-
gether to infer correspondences, and the only projected fea-
ture that we can reliably identify is the boundary between
two stripes. Focusing on stripe boundaries has several advan-
tages. For example, if the stripes on either side of a stripe
boundary can each be assigned n different codes over time,
then nearly n’ distinct stripe boundaries can be identified in a
camera image.

Each pattern is composed of four frame stripe code ima-
ges. A stripe boundary code involves assigning a binary
(black or white) to each pixel in time, such that each stripe
boundary has a unique code ( consisting of the black/white
illumination history on both sides of the boundary) over the
sequence of four frames. Projecting the sequence of pattern
images on the object in the scene, we can capture the reflec-
tion pattern of the object from another view. Furthermore,
we can obtain the sequence of structured-light images with
stripe code information. Through scanning the images, we
can filter out the stripe boundary code points set and every
space point on the project pattern stripe boundaries can be
uniquely labeled. The stripe codes can also introduce linear
constraints in the current scene; the constraints are that
points with the same stripe code on the projective plane are
collinear. From the above linear constraints, a new norm of
optimization of the fundamental matrix estimation is de-
duced, which is discussed in section 3.

Fig.2 Stripe code pattern images

In order to generate such patterns, we form an analogy be-
tween stripe boundary codes and build a jump list in an n-di-
mensional state space, for searching a maximal-length list
that satisfies several conditions. In an n-dimensional state
space, there are n’ directed jumps. Using commutative alge-
bra, we design the algorithm for the generation of the code
as follows:

1) All adjacent state bits are inversed, and their list is P,
={i,e,&,_,...6,&, }. The number of edges with no direc-

tion is 2"'. Put the entire list into an available set.
2) Only one bit of state is equal, and the list is P, = {i,

n-1

£, Ep1Ep &, )(n=k=1). This is a cube with n x2
edges. Since there is one equal bit in the code, the pattern
has one invisible stripe boundary. If the adjacent pattern
code has an invisible boundary at a same bit, the pattern can-
not be used. Otherwise, we put the pattern code in the avail-
able set.

3) Increase the same bit number and repeat the above op-
eration until the same bit number k=1log2n.

4) In the available set, we filter the pattern code with the
selection rule. For example, in the four state spaces we find
about 55 patterns and 110 stripe codes. Consequently, in this
paper we use stripe codes as shown in Fig. 2.

2 Basic Algebraic Estimation

Suppose that a plane £ is imaged by two cameras at differ-
ent angles. Let 7 and 77’ be images of the plane from the
two cameras. If the cameras satisfy the pinhole model, the 7r-
to-7'image transformation can be described by a planar ho-
mography, a non-singular 3 x 3 projective matrix. Given a
pair of homogeneous coordinates of pixels p = {x,y,1}" in
arand p’ = {x', ¥', 1}" in 7’ that correspond to the same
point on plane £, there exists a planar homography F be-
tween the two image points.

pFp’' =0 (D)
where
fo fo Ji
F = f21 fzz f23
fa fa Sa
If we let

7={fn’f12’f13’f21’fzz’fz3»f31’fszaf33}T (2)

be the vector of parameters, x = {m,, m,, m;, m) 1T be the
vector of variables, and

’ ’ ’ ’ ’ ’ T
I'(x) ={mm,, m,m|, m}, mm;, mym,, m,, m,, m,, 1}

be the vector of transformed variables, then Eq. (1) can be
rewritten as

7 I(x) =0 (3)

which is the epipolar equation that we exploit to design a
new method for estimating the fundamental matrix with a set
of corresponding points.

Estimating the fundamental matrix is based on the use of
cost functions measuring the extent to which the data, and
candidate estimates fail to satisfy the epipolar equation (3).
First, the rank-2 constraint is set aside for simplicity. Then,
given a set of data x,, ..., x, and a cost function J =
J(m;x,,...,x,), acorresponding estimate 7 is defined as the
parameter which minimizes J:

J(7) =rp££11(7;x1, v X)) (4)

Eq. (1) does not change if 7 is multiplied by a nonzero
scalar. Therefore, the corresponding estimate is defined only
within a scalar factor. The algebraic least-squares estimator
is derived from the cost function:
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Jus(mix,, x) = ||z 23 ne'Ar (5)
i=1

where A, = I'(x,) I'(x,)". Here, each 7'A,7 is equal to the

square of the algebraic distance |+ I (x,) |. If the individual

datum x, is represented by (m,, m]), the algebraic distance

between the datum and a candidate fundamental matrix F

can be written as | m/Fm, |.
We let

U=[I(x),....[(x)]

and the least-squares solution for F is the singular vector
corresponding to the smallest singular value of the U; that

is, the last column of V in the SVD U, = UDV". The solu-
tion vector F° found in this way minimizes | U,F° || sub-
ject to the condition F° =1.

In general, the solution matrix F° will not satisfy the sin-
gularity constraint of rank 2. Furthermore, the most conven-
ient way to do this is to correct F’ using the SVD again. Let
F° =UDV" be the SVD of F’, where D is a diagonal matrix
and D = diag(r, s, t) ' satisfying r=s=t. Then F = Udiag(r,
s, 0) V" minimizes the Frobenius norm, which is the basic al-

gebraic estimation of the fundamental matrix.

Generally, the solution above is the initial step of estima-

tion, since it is only feasible for the 8-points and not optimal
for the entries in the corresponding points set. Ref. [ 7] gives
an iterative estimation based on the algebraic minimization

algorithm. Its disadvantages are: 1) The times of iteration are

unknown;2) The estimation of the matrix is not optimal un-
til the end of the process;3) The approximation of the mid-
dle step result matrix in the iteration will not be uniformly
convergent. However, in most reconstruction systems, the
optimal estimation of the fundamental matrix is not a prereq-
uisite. The major problem is how to find a good enough esti-
mation. If we determine a norm error estimate to identify the

approximation of optimization, we can develop algorithms to

control the computation process automatically and find the
proper estimation results.

3 Stripe Linear Constraint and HT Radius

Obviously, in a structured-light system, we can design
some special patterns, and make the points in the projective

plane have collinear constriction. Our scheme works as fol-

lows: Let P,(i =0, ..., m) be points on the same stripe line
in one camera plane and P (i =0, ..., m) be their corre-
sponding points on the projective plane, as shown in Fig. 3.
Since P/ is collinear in the projective plane, it satisfies

}:0

where {x],y,,1} (i=0, ..., m) are the P,’s homogenous co-
ordinates, and [ is the linear coefficient vector. In the polar

a
-1
b

P l={x], y, 1}{ (6)

coordinates system, Eq. (6) can be rewritten as

cosf
sinfd
P

P'l={x],y, 1}{ (7)

}:0

In Eq. (7), point P! in the projective plane is transformed

3
<\
A
Ry
Hough
transform

Fig.3 Hough transform radius

into the corresponding sinusoids in the space of (6, p),
called the Hough transform. Since P (i =0, ..., m) is collin-
ear, the sinusoids must have one point of intersection in [0,
7] . In fact, because the estimation result of the fundamental
matrix is not optimal, the projective points will not be exact-
ly collinear. In this case, the sinusoids will have several in-
tersection points in a small range of [0, 7]. The radius of
the intersection area can be denoted as Ry, called the HT ra-
dius. If the estimation matrix is more approximate to opti-
mality, R, is closer to zero. Therefore, the HT radius is the
function of the estimation result and a new fast criterion of
optimization of the fundamental matrix estimation. The ma-
jor steps of the algorithm to calculate the HT radius are as
follows:

1) Let F be the estimation result matrix, and {P,, \ k=1,
..., m} be the points set on the stripe / in the image plane.
Substituting F and { P, } in Eq. (1), the corresponding
points set {P], | k=1, ..., m} on the projective planar can be
obtained.

2) Using the Hough transform, the points set {P;, k=1,
..., m} can be mapped to the Hough space, and the intersec-
tion set {7} in the range of [0, ] on the plane (0, p) of
the sinusoid can be calculated. The cluster radius of T, is de-
noted as R,

3) Repeat the above steps on other stripes in the image.
The maximum value of R}, is the R, of the estimation ma-
trix F.

Logically, the estimation optimization problem is conver-
ted to a cluster analysis problem, and R, is defined as the
cost function for estimation.

(T3 X5 0x,) = 2], HRHT(x) ”2 (8)

Following previous work, we present that the HT radius is
the fast norm to check the optimal level of the current esti-
mation, and can be used in the function automatically. The
advantages of this method lie in: 1) The partial part of the
corresponding points set, rather than the entire set, is calcu-
lated;2) Each step of the process can be divided into several
parallel computing parts in order to increase the efficiency of
implementation in multi-core systems. The algorithm can be
regarded as a variant of the Newton-Raphson method, shown
as follows:
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1) Find an initial approximation F° for the fundamental
matrix using the normalized 8-point algorithm.

2) Find the right null-vector e’ of F’.

3) Start with the estimate e'<«—e” for the epipolar, and
compute the matrix E'.

4) Find the vector f' = E'm' that minimizes Hough trans-
form radius R, which defines a mapping e'—R};.

5) Use the Levenberg-Marquardt algorithm to vary e’ iter-
atively so as to minimize ||Ri, |.

6) Do convergence until the desired fundamental matrix F
is recovered.

4 Experiments

Our algorithms have been tested in a structured-light sys-
tem with stripe code patterns. All experiments are done on a
workstation with dual Intel Xeon 1 GHz processors with
1 GB of RAM and a Matrox Parhelia 128 MB PCI-Express
graphics card. The projector is an Epson EMP500 with
SVGA 2000 ANSI Lumen illumination. Captured through a
CE-7861C CCD camera at a resolution of 352 x 288, the
original color images are first converted to 8-bit gray-scale
images before processing. The software system is developed
with Borland C ++ Builder 6 IDE on Windows XP.

Our experiments proceed as follows. A realistic stereo
camera configuration is obtained when the camera and the
projector’s optical axes are not co-planar, and their intrinsic
parameters are slightly different. 3D points are then projec-
ted onto the images to generate many pairs of corresponding
points. A range of tests are then conducted; each is carried
out with respect to an average level of noise a. For a given
test, each image point is perturbed by adding zero-mean
Gaussian noise of standard deviation a independently of each
of the two coordinates. Each method is then supplied with
these noise matching points and challenged to compute the
fundamental matrix. For each a, the fundamental matrix is
computed 50 times from a specific set of 96 corresponding
points, with new perturbations being added each time. For
each fundamental matrix obtained, an error measure is com-
puted as the sum of the distances of the underlying true
points and the epipolar lines derived from the estimated fun-
damental matrix, in both the left and right images. A com-
posite error measure is then obtained by averaging this error
over all 50 trials. This entire process is repeated for different
average levels of noise ( varying from 0.25 to 3 pixels in
steps of 0.25). Fig. 4 shows the average epipolar-distance
pixel errors obtained by each method. The tests reveal that
the normal algebraic algorithm and the RHT algorithm per-
form identically. In our experiments, therefore, RHT suc-
ceeds in minimizing errors as well as the normal algorithm
did.

Finally, an indicative reconstruction test is carried out.
Corresponding points are extracted from images of an object
in the structured-light system. The associated fundamental
matrices are computed using the RHT algorithm. A self-cali-
bration procedure is then used to determine the relative ori-
entation of the cameras, with the camera intrinsic parame-
ters having been precalibrated in the laboratory. Fig. 5 shows
the reconstruction results of a tiger mask. Fig. 5(a) is the
original frame with stripe codes. Fig. 5(b) is the point cloud
of the reconstruction results from the same perspective.
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Fig. 4 Fundamental matrix estimation error vs. average
noise level

(b)

Fig.5 Reconstruction of a tiger mask. (a) A frame of cap-
tured images of a tiger mask; (b) The point cloud of the recon-
struction results

5 Conclusions

The significant contributions obtained from this paper are
enumerated as follows:

1) The HT radius is introduced as a new fast criterion of
optimization of the fundamental matrix estimation for con-
verting the estimation optimization problem to a cluster anal-
ysis problem in a Hough transform space.

2) The new algorithm based on stripe constraints is pres-
ented. The algorithm is an effective variant of the traditional
calculation of the fundamental matrix. The practicality and
performance of the algorithms are verified by experiments in
this paper.
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