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Abstract: Aiming at the optimum path excluding characteristics
and the full constellation searching characteristics of the K-best
detection algorithm, an improved-performance K-best detection
algorithm and several reduced-complexity K-best detection
algorithms are proposed. The improved-performance K-best
detection algorithm deploys minimum mean square error
(MMSE) filtering of a channel matrix before QR decomposition.
This algorithm can decrease the probability of excluding the
optimum path and achieve better performance. The reduced-
complexity K-best detection algorithms utilize a sphere decoding
method to reduce searching constellation points. Simulation
results show that the improved performance K-best detection
algorithm obtains a 1 dB performance gain compared to the K-
best detection algorithm based on sorted QR decomposition
(SQRD). Performance loss occurs when K = 4 in reduced
complexity K-best detection algorithms. When K =8, the reduced
complexity K-best detection algorithms require less computational
effort compared with traditional K-best detection algorithms and
achieve the same performance.
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ultiple-input multiple-output ( MIMO) systems pro-
Mvide very high capacity compared to single-input sin-
gle-output ( SISO ) systems in Rayleigh fading environ-
ments'" . Signal detection in MIMO systems is more com-
plex than in SISO channels because of the interference
among multiple antennas. The maximum likelihood detection
(MLD) algorithm is an optimal detection algorithm when the
transmit symbols are equally probable, but it is not feasible
in practice owing to its extremely high computational com-
plexity.

The sphere decoding algorithm ( SDA) ™ has been inves-
tigated in order to reach a near ML performance with re-
duced computational effort. The sphere decoding algorithm
can be regarded as a depth-first tree search approach with
pruning. The main disadvantage of the depth-first tree search
approach is that the required computational effort varies with
different signals and channels. Hence, the detection through-
put is not fixed, which is not desirable for real time detection
and hardware implementation. The K-best algorithm and the
K-best-SQRD algorithm"” deploy a breadth-first tree search
method. These algorithms require less computational effort,
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have fixed throughput, and are suitable for hardware imple-
mentation.

In this paper, we introduce an improved-performance K-
best algorithm based on the MMSE-SQRD" ™ and several re-
duced-complexity K-best detection algorithms. The extended
channel matrix deployed in the MMSE-SQRD algorithm is
also applicable in the K-best algorithm. The performance of
the K-best MMSE-SQRD ( KB-MMSE-SQRD) algorithm is
better than that of the traditional K-best algorithm. Complex-
ity can be reduced by limiting the search points for each
route, which is similar to the method used in a sphere deco-
ding algorithm. The SQRD solution is used to calculate the
initial value of squared Euclidean distance in order to reduce
the number of candidate constellation points for each route.
The number of routes in the route queue of the reduced-
complexity K-best algorithms is not fixed to K. The maxi-
mum number of routes in route queue is K and the minimum
is 0. The SQRD solution is used as default output when the
route queue is empty.

1 System Description

Fig. 1 depicts a flat-fading layered space-time MIMO sys-
tem with n, transmit antennas and n, receive antennas (n, <
ng) . Considering one time slot of the discrete complex base-
band equivalent model of such a system, the received sym-
bol vector r = {r,, r,, ..., r,“}T is given by

r=Hs +7 (D

where s = {5, 5,, ..., snT}T denotes the transmit vector and
the constellation size is M_. The average transmit power of
each antenna is normalized to one. H, ,, is the channel ma-
trix. H, ; represents the channel gain between the j-th trans-
mit antenna and the i-th receive antenna. H is constant over
a frame and changes independently from frame to frame. 5
={n M s M, }" is zero means that the uncorrelated
complex additive Gaussian white noise with co-variance ma-
trix cov(m) = a-il . We assume that channel matrix H is
completely known at the receiver end.
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and n, receive antennas

A typical MIMO system with n; transmit antennas
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2 Sorted QR Decomposition and K-Best Algorithm
2.1 Sorted QR decomposition

Performing QR decomposition to channel matrix H, we
obtain

H=0R (2)

where R is an up-triangular matrix and Q is a unitary ma-
trix, 0"Q =1. We multiplex Q" with the received vector

F=0"r=Rs +Q0"n=Rs +7 (3)

The co-variance matrix of 7 is identical to that of %, i. e.
cov(n) = ‘val =cov(n).

Sorted QR decomposition differs from QR decomposition
in that the column of H is permuted, i. e. le? = HP, where

P is a permute matrix and P"P =I. Multiplying Q with the
received vector, we obtain

r=0"r=RP"s +Q"n=Rs +q (4)
where ;,, 7 and i have the same statistical characteristics.

2.2 K-best algorithm

According to the ML criterion, the maximum-likelihood
solution §,, can be obtained by the following equation:

Sy = arg min|r — Hs |’ = arg min||7 - Rs || (5)
s s

Let ML metric E be the squared Euclidean distance be-

tween 7 and the candidate vector Rs,, where s, = {0,0, ...,
-1
T . .
Sps Spats oo Sn,} , 5, 1s candidate symbol chosen from con-

stellation {C,, C,, ..., CML}.
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E, + ‘?k =R s — zT,Rk.jsj (6)

j=k+1

According to Eq. (6), E, is determined by E, , s,,, and
s,. In the K-best algorithmm, detection starts from the last
layer and proceeds layer by layer. In the k-th layer of this a
lgorithm, E for all the search routes are calculated based on
K best routes of the (k + 1)-th layer and constellation. K
best routes that have the least £, are passed on to the next
layer. The algorithms terminates when it reaches the first
layer, and the output is generated based on the route which
have the least metric in the route queue. K x M_ candidates
are to be searched in each layer.

3 Proposed MIMO Detection Algorithms

In this section, the sorted QR decomposition of the ex-
tended channel matrix is used to improve the performance of
K-best algorithms and reduced-complexity K-best algorithms
are proposed.

3.1 KB-MMSE-SQRD algorithm

In the linear MMSE detection algorithm'”', the MMSE fil-
ter matrix is given by

GMMSE=(HHH+Uf71) “'H" (7)
The resulting filter output is

EMMSEzGMMSEr=(HHH+UiI) “'H'r (8)
Lem=[ 1 anar=," ite Eq. (8
etf_[a'nl] an C—[OW], we rewrite Eq. (8) as

Swwse = (H'H) "H'r=H'r 9

The MMSE-SQRD algorithmm differs from the sorted QR
detection in that the MMSE-SQRD deploys extended chan-
nel matrix H instead of channel matrix H. The MMSE-

SQRD is also applicable to the K-best algorithm. Unitary
matrix Q obtained from sorted QR decomposition le( =HP
is a (n; + ny) x n, matrix. Up triangular matrix R and per-
mute matrix P are both n, X n, matrix. The received vector

after filter r = QHr is an n, dimensional vector. Therefore,

the search process of the KB-MMSE-SQRD algorithm is the
same as that of the K-best algorithm. The implementation of
the algorithm described above is described in Fig. 2.
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Fig.2 KB-MMSE-SQRD algorithm
3.2 Reduced-complexity K-best algorithms

In K-best algorithms, all of the constellation points are
searched for each route. We deploy a method that is similar
to the method used in the sphere decoding algorithm'”' to re-
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duce complexity. The core idea of this method is to reduce
the number of constellation points to be searched for each
route. The SQRD solution is used to calculate the initial
squared Euclidean distance and it is also used as a default
solution when no route is left in the route queue, the number
of routes in the queue is a variable between 0 and n.. This
method is also applicable to the KB-MMSE-SQRD.

After sorted QR decomposition, SQRD solution §gy, is
calculated and squared Euclidean distance déQRD is

déQRD = (; _RESQRD) H(; _R§SQRD) (10)

We choose the constellation points within the sphere

(1)

iy
2 - - o 2
= = - —
dSQRD = E.rk Esm + Ty Rk.ksk Z Rk,jsi

j=k+1
E, and z Iv'\’ky ;5; are known for each route at the k-th lay-
j=k+1

ny
, o~ o
candr, =r, — zf:‘le’ij , we have
Jj=k+

er. Letd'” = déQRD -E

Si.

~R, 5. | (12)

d’= \r;

So, the constellation points within the sphere are deter-
mined by

(—d’+r’ﬂ<s<Ld’+r;J (13)
~ ~ k\ ~

Rk.k Rk,k

The reduced-complexity K-best-SQRD algorithm de-
scribed above is shown in Fig. 3. This reduced-complexity
algorithm can be applied to the KB-MMSE-SQRD because
the difference between the KB-MMSE-SQRD algorithm and
the K-best-SQRD algorithm lies in the filter. In the RC-KB-
MMSE-SQRD algorithm, the extended channel matrix is
used and the MMSE-SQRD solution is deployed to calculate
the initial squared Euclidean distance. The search process is
the same as that of the RC-K-Best-SQRD algorithm.

4 Performance and Complexity Analysis

The performances of K-best detection algorithms and the
full-ML algorithm are compared by means of MONTE
CARLO simulations. Fig. 4 shows the bit error rate of an un-
coded transmission of QPSK in a system with n. =8 and n,
=8 antennas. The performance of the KB-MMSE-SQRD is
very close to that of full-ML when K =4 or K =8. The K-
best-SQRD obtains a 2 dB performance gain compared with
K-best when K =4. By using the extended channel matrix, we
can obtain a 1 dB performance gain from the KB-MMSE-
SQRD compared to that of the K-best-SQRD when K =4.

Fig. 5 shows the performance of reduced-complexity K-
best algorithms in an n; =8, n, =8 MIMO system. The RC-
MMSE-SQRD achieves near ML performance when K =8§.
The RC-KB-MMSE-SQRD algorithm still obtains about a 1
dB performance gain compared to the RC-K-best-SQRD al-
gorithm when K = 4. The reduced-complexity algorithms
have performance losses compared to K-best algorithms
when K =4. The optimal route which has a big metric in the
lower layers may be excluded when the route queue is
small. The performance of reduced-complexity K-best algo-
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Fig.3 RC-K-best-SQRD algorithm
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Fig.4 Bit-error performance of K-best algorithms

rithms is identical to that of K-best algorithms when K =8.

The complexity of a detection algorithm can be reflected
by its required number of multiplications. As shown in Tab.
1, the number of multiplications required by ML is
O(n.n,M"). The complexity of K-best algorithms is corre-
lated with K, M, and n,. In an 8 x 8 MIMO system, the K-
best-SQRD requires 224 more complex multiplications than
K-best and the difference of complexity between the KB-
MMSE-SQRD and the K-best-SQRD is 672 complex multi-
plications.
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Fig.5 Bit-error performance of reduced-complexity K-best algorithms

The required average multiplications for reduced-com-
plexity algorithms in the 8 x 8 MIMO system is shown in
Tab. 2. The complexity of reduced-complexity algorithms is
correlated with E, /N, because there are more candidate con-
stellation points for each route in low E,/N, than in high
E./N,. Average computational effort spent on searching is
lower in the RC-KB-MMSE-SQRD than in the RC-K-best-
SQRD. When E,/N_, =0 dB, the RC-K-best-SQRD requires
358 more multiplications than the RC-KB-MMSE-SQRD in
searching. In the RC-KB-MMSE-SQRD, the required com-
putational effort drops very fast as E, /N, increases and it be-
comes stable when E,/N, =8 dB.

Tab.1 Number of complex float multiplications required by detecting a signal vector

Required numbers of complex float Example of a QPSK,

Algorith Steps
gortim cps multiplications per signal vector 8 x 8 system
. o Generation of candidate vector Hs npng MLT
Full maximum-likelihood . . . 4718 592
Calculation of squared Euclidean distances npgMZT
QR decomposition of matrix H (n% —np)ng
K-best Multiplication of Q" to received signal vector nghy 912(K =4)
-bes
Generation of routes ne(np +1)K/2 + neM K 1312(K=8)
Calculation of squared Euclidean distances neM K
Sorted QR decomposition of matrix H 3(n} —np)ng/2
K-best-SQRD Multiplication of QH. to received signal vector ngny 1 136(K =4)
Generation of routes ne(ny +1)K/2 + nM K 1 536(K =8)
Calculation of squared Euclidean distances neM K
Sorted QR decomposition of matrix H 3(nk —np)(ng +ng)/2
Multiplication of Q" to received signal vector ngniy 1 808(K =4)
K-best-MMSE-SQRD -
Q Generation of routes ne(np +1)K/2 + ntM_K 2 208(K =8)
Calculation of squared Euclidean distances neM K

Tab.2 Average number of complex float multiplications required by detecting a signal vector (K =8)

(E, - N;')/dB RC-K-best RC-K-best-SQRD RC-KB-MMSE-SQRD
0 1278.9 1 469. 8 1827.9
4 1116.3 1 209. 6 1 655.4
8 884.6 1 008. 1 1585.1
12 792.2 934.6 1581.6
16 712.5 927.7 1 580. 4
20 703.8 916.2 1579.9

5 Conclusion

In this paper, an improved-performance K-best algorithm
and reduced-complexity K-best algorithms are proposed,
which include KB-MMSE-SQRD, RC-KB-MMSE-SQRD,
RC-K-best-SQRD and RC-K-best. All these algorithms can
improve the detection performance, or reduce the computa-
tional complexity compared to traditional K-best algo-
rithms. Among these algorithms, the RC-KB-MMSE-SQRD
is the most promising regarding performance and complexi-
ty. The KB-MMSE-SQRD algorithm can easily be applied
to other tree search algorithms.
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