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Achievability of Chong-Motani-Garg relay channel capacity bounds
using forward decoding
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Abstract: To reduce decoding delay of a communication scheme
which is backward-decoding-based and achievable Chong-
Motani-Garg capacity bounds, a novel forward-sliding-window
decoding-based communication scheme is proposed. In this
scheme, if w =(w,, w,) is the message to be sent in block b, the
relay will decode message w, and generate a new message z at the
end of block b, and the receiver will decode message w, at the
end of block b +1 and decode message z and w, at the end of
block b + 2. Analysis results show that this new communication
scheme can achieve the same Chong-Motani-Garg bounds and the
decoding delay is only two blocks which is much shorter than that
of backward decoding. Therefore, Chong-Motani-Garg bounds
can be achieved by a forward decoding-based communication
scheme with short decoding delay.
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he discrete memoryless three-node relay channel deno-
Tted by (Sy X Sy, (50 ¥, | X, %,), S, X S,;) consists
of a sender X, € Sy,, a receiver Y, € S, a relay sender X,
S, a relay receiver Y, € S,,, and a family of conditional
probability mass functions p(y,, y; | x,,x,) on S, x S,,,
one for each (x,,x,) € Sy, xS,,, as illustrated in Fig. 1. For
the relay channel, a (2", n) code consists of a set of integers
Sy,=1{1,2, ..., 2", an encoding function that maps each
message w e S, into a codeword x,(w) of length n, a set of
relay encoding functions x, = £,(y;, y3, ..., yy ') for I <i<
n, and a decoding function that maps each received n-se-
quence y, into an estimate Ww(y,). A rate R is achievable if
there exists a sequence of (2%, n) codes with P\” =Pr{W##
W}—0 as n approaches infinity, and the supremum over all
achievable rates is defined as the channel capacity C.
The relay channel was first introduced by van der Meulen'
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Fig.1 The three-node relay channel
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Substantial progress was made by Cover and Gamal who de-
veloped three classes of coding strategies: the decode-and-
forward (DF) strategy, the compress-and-forward( CF) strate-
gy, and the mixed strategy which combines DF and CF" ™
Guided by this classification, many different coding and de-
coding schemes for the relay channel have been developed in
the literature and a recent survey on the relay channel can be
found in Refs. [5 — 6]. This paper focuses on the mixed
strategy for the general discrete memoryless three-node relay
channel.

For three-node relay channel using mixed strategy, the ca-
pacity remains unknown to date. But some capacity lower
bounds have been established in the literature. The first ca-
pacity lower bound was proposed by Cover and Gamal in
Ref. [3]. Recently, Chong, Motani and Garg proposed two
alternative bounds in Ref. [7]. It is shown in Ref. [7] that
these two Chong-Motani-Garg bounds always include the
Cover-Gamal bound. However, these two better bounds are
achieved by a backward decoding scheme'™', which can incur
a substantial decoding delay. The contribution of this paper
is that, we show that the Chong-Motani-Garg bounds can al-
so be achieved by a forward decoding scheme, whose deco-
ding delay is negligible.

1 Chong-Motani-Garg Lower Bounds

For a three-node relay channel using a mixed strategy,
some capacity lower bounds have been established in the lit-
erature. The first lower bound was proposed by Cover and
Gamal in Ref. [3], which is

Reg =sup min{I(U; Y, | V,X,) +I(X,; ¥,, Y, | U, X,),
I(X,,X,;Y) -IY,; ¥, |UX,,X,,Y,)) (1)

where the supremum is taken over all joint probability densi-
ty functions of the form

P, v, x,, Xy, ¥,0 500 v3) =p(V)p(u | v)p(x, | u) -
p(x, [ V)P, y; |2, ) (9, | x50 3, 0) (2)

subject to the constraint
I(7,:Y, | U.X,. V) <KX,3 Y, | V) (3)

Recently, Chong, Motani, and Garg proposed two alterna-
tive lower bounds. The first one is achieved by sequential
backward ( SeqBack) decoding in Ref. [ 7], which is

Rewe™ =sup min{I(U; Y, | V. X,) +I(X,: ¥, Y, | U, X,),
(U, V;Y) +1(X,:1,,Y, | U, X,)) (4)

where the supremum is taken over all joint probability densi-
ty functions of the form (2)subject to the constraint

(Y, |UX,, Y)<IX,;:Y,|UV) (5)
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The second one is achieved by simultaneous backward
(SimBack) decoding in Ref. [ 7], which is

RIS —sup min{I(U,Y, | V. X,) +I(X,;¥,,Y, | U, X,),
I(X,X;Y) -I(Y; Y, | U X, X,,Y,) ) (6)

where the supremum is taken over all joint probability densi-
ty functions of the form (2) subject to the constraint (5).

It is shown in Ref. [7] that Ry and Rime™* always in-
clude R.; and are therefore two better bounds. However, in
Ref. [7], backward decoding is used to prove the achiev-
ability of these two better bounds. It is well known that,
backward decoding can incur a substantial decoding delay

which may be unacceptable in practice.
2 Forward Instead of Backward

Forward decoding does not incur a substantial decoding

delay. In this section, we prove that lower bounds R and
RIe“* can be achievable under forward instead of backward
decoding.

. . SeqBack .
We first consider R and the main result can be sum-
CMG

marized in the following theorem.

Theorem 1 Forward decoding can achieve the capacity
lower bound RZEN™* for the general discrete memoryless
three-node relay channel using mixed strategy.

Proof (Outline) As in Refs. [3, 7], a block Markov cod-
ing argument is used. Therefore, we consider B blocks, each
of which contains n symbols, and a sequence of messages
w, o xwhel[1,2"] x[1,2"],b=1,2, ..., B -1, will be
sent over the channel in nB transmissions.

We first generate a codebook, which consists of five
steps.

1) Generate 2" i. i. d. n-sequences v with

p(y) = Hp(vi)

Label these v(m), me[1,2"].

2) For each v(m), generate 2" i. 1. d. n-sequences u with

pCuvim)) = T]pCu; |vi(m))
i=1
Label these u(w' | m), w’ e[1,2"].
3)For each u(w' | m), generate 2" 1 d. n-sequences X,
with

u(w' | m))

pCx, [uCw' [m)) = [Tp(x,,

Label these x,(w" | w',m), w"e[1,2"].

nR

4)For each v(m), generate 2" i. i. d. n-sequences x, with

p(x, [v(m) = []pCx,; [vi(m)

Label these x, (s \ m),se [1,2"R] .
5)For each (u(w'
sequences ¥, with

m),x,(s | m)), generate 2" 44, d. n-

p(ﬁz ‘u(W, ‘m)’xz(s ‘ m)) =

Hp(yz,[

w(w' [m), x, (s |m))

Label these §,(z | w', s,m),ze[1,2"].

Given the generated codebook and the message w, = (w},
w",) which is to be sent in block b, the encoding operation
consists of two steps.

1) The source sends x,(w" | w!, w!_,)in block b.

2) The relay at the end of block b — 1 has an estimate
W), _, of w,_, from decoding step 1) and generates z,_, from
decoding step 2), and then sends x,(z,_, | w}_,) in block b.

Finally, the decoding operation also consists of five steps:

1) The relay determines the unique W, such that (u (W)

[ W) Ya0v(W), ), X, (2, [ w)_))) is jointy e-typical
at the end of block b. For sufficiently large n, w, = w} with
high probability if

R <I(U,Y, | V.X,) (7

2) The relay determines the unique z, such that (§,(z,

‘ Wi Zy_1s Wh_1)s Yo u( w,, ‘ wy,_ ), X, (2, ‘ wy,_,)) is
jointly e-typical at the end of block b. For sufficiently large
n, such a z, will exist with high probability if

R>1Y,;Y,|UX,) (8)

3) The receiver determines the unique W, , such that
(v(W}_,),y;,) is jointly g-typical at the end of block b and
(w(#',_, | Wy 0).¥s s v(W,_,)) is jointly e-typical at
the end of block b - 1. For sufficiently large n, w, , =w, _,
with high probability if

R <I(V;Y)) +I(U; Y, | V) (9)

4) The receiver determines the unique £, , such that
(x,(Z,_, ‘ Wy1)s Vs w(wy, [wy ), v(w,_,)) is jointly e-
typical at the end of block b + 1 and (§,(%,_, | w)_,, z,
Wy 0) s Yapors wwy, ‘ Wy, 5),%,(2, , ‘ w,_,)) is jointly e-
typical at the end of block b. For sufficiently large n, 2, | =
z,_, with high probability if

R<I(X,;Y,|U V) +I(Y,;Y, | UX,) (10)

5) The receiver determines the unique W) _, such that (x,

(w,l;—l ‘ W;fl’ Z,5), ¥, (2, ‘ Wi)fl’ Ty _ar Wya)s Yib-1s
u(w, \ wy ,),%,(2, 5 \ w, _,)) is jointly g-typical at the
end of block b + 1. For sufficiently large n, W), , =w',_, with

high probability if

R'<I(X;Y,,Y, | UX,) (11)

From (7)and (11), we obtain the first term of (4). From
(9)and (11), we obtain the second term of (4). From (8)
and (10), we obtain the constraint (5).

Remark 1 This proof uses the regular encoding and
sliding window forward decoding and does not use the back-
ward decoding technique. Simply speaking, the receiver first
uses y, ,_, and y, , to decode w,’_, at the end of block b, then
uses w,_,,w, , ¥s,_,,and y;, to decode z,_, at the end of
block b +1, and finally uses z,_,, w,_,, and y, ,_, to decode
w’ _, at the end of block » + 1. Therefore, the decoding de-
lays of w, _, and w,_, are one block and two blocks, respec-
tively.

Remark 2 The decoding scheme used in this proof is
just a small modification of that of Cover and Gamal. Exact-
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ly speaking, our proof modifies the decoding order of that of
Cover and Gamal. Actually, for the decoding scheme of
Cover and Gamal in Ref. [2], considering the usage of irreg-
ular encoding, the receiver will first decode partial w)_, at
the end of block b, then decode partial z, , at the end of
block b, then decode complete w;_, at the end of block b,
then decode complete z, , at the end of block b, and finally
decode w,”  at the end of block b. Therefore, the decoding
order of Cover and Gamal is

{partial w,_,, partial z,_,, w},_,,z,_;, w;_,}
In our proof, the decoding order has been modified to be
{partial w,_,, w;_,, partial z,_,z,_,, w;_,}

Considering the usage of regular encoding, the actual de-
coding order used in our proof is

W, sz, Wi,

After modifying the decoding order, the achievable rate
can be increased from R to Ree at the cost of one more
block decoding delay.

Next consider Ryye ", and the main result can be summa-
rized in the following theorem.

Theorem 2 Forward decoding can achieve the capacity
lower bound Rine™* for the general discrete memoryless
three-node relay channel using mixed strategy.

Proof The achievability of Regg ™" i
of the achievability of Rpne . The codebook generations,
encoding and decoding are exactly the same as in the last
proof. Therefore, we obtain the first term of (6) from (7) and
(11), and obtain the constraint (5) from (8)and (10). Final-
ly, from (9) and (11), the rate of transmission from sender

to receiver is bounded by

is a simple corollary

(U, V.Y,) +1(X,:Y,.Y, |U,X,) =I(U, V; Y,) +
I(X:Y,|UX,) +I(X,:7,|UX,,V,) =
I(XI’X Y3)—I(X2;Y3‘U,V)+I(X1;Y2‘U,X2,Y3)

Substituting the constraint I( ¥, Y, | U, X,, ¥,) <I(X,; Y,

h gk 5
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\ U, V) from (5) and considering I( Yz; Y, \ U X,,Y,) =
I(X:Y, |UX, Y)+I(Y,;Y, | U X, X,,Y,), we obtain
the second term of (6).

3 Conclusion

This paper studies the Chong-Motani-Garg capacity lower
bounds of the general three-node relay channel. In the litera-
ture, the Chong-Motani-Garg bounds are achieved under
backward decoding, which can cause long decoding delay. In
this paper, we propose a forward sliding window decoding
scheme to achieve the same bounds with negligible decoding
delay. Additionally, the decoding complexity of our forward
scheme is comparable with that of the backward scheme.
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