Journal of Southeast University (English Edition)

Vol. 25, No. 1, pp. 31 -35

Mar. 2009 ISSN 1003—7985

Shrek: a dynamic object-oriented programming language

Cao Jing"’

2
Xu Baowen*’

Zhou Yuming™’

('School of Computer Science and Engineering, Southeast University, Nanjing 210096, China)
(*Department of Computer Science and Technology, Nanjing University, Nanjing 210093, China)

(* Software Quality Institute of Jiangsu Province, Nanjing 210096, China)

Abstract: From a perspective of theoretical study, there are some
faults in the models of the existing object-oriented programming
languages. For example, C ++ does not support metaclasses, the
primitive types of Java and C# are not objects, etc. So, this paper
designs a programming language, Shrek, which integrates many
language features and constructions in a compact and consistent
model. The Shrek language is a class-based purely object-oriented
language. It has a dynamical strong type system, and adopts a
single-inheritance mechanism with Mixin as its complement. It
has a consistent class instantiation and inheritance structure and
the ability of intercessive structural computational reflection,
which enables it to support safe metaclass programming. It also
supports multi-thread programming and automatic garbage
collection, and enforces its expressive power by adopting a native
method mechanism. The prototype system of the Shrek language
is implemented and anticipated design goals are achieved.

Key words: dynamic typing; metaclass programming;
computational reflection; native method; object-oriented
programming language

hrek is a programming language which we have de-
S signed and implemented. It uses a Smalltalk-like syn-
tax. The design goals of Shrek are: 1) It should be a class-
based purely object-oriented language satisfying six princi-
ples proposed by Kay'™, and be dynamically, strongly
typed"™'; 2) It should be of single-inheritance with Mix-
in""" as its complement, and have a consistent class instanti-
ation and inheritance structure which ensures safe metaclass
programming"*'; 3) It should support automatic garbage
collection, multi-thread programming, native methods and
intercessive computational reflection'"” "'

Fig. 1 shows the architecture of the Shrek program devel-
opment environment. Object space is an object container
which handles object allocation, accessing, and recycling.
Other modules access objects only through the interfaces
supplied by object space. The debugging tools kit is used to
inspect the runtime information of active objects in object-
space. It includes class inspector, method inspector, object
space inspector, etc. The class information window shows all
declared classes and their fields and methods by using de-
bugging tools. The compiler reads in class declarations, gen-
erates classes and method objects and parses method source

Received 2008-07-15.

Biographies: Cao Jing(1980—), male, graduate; Xu Baowen(corresponding
author) , male, doctor, professor, bwxu@ seu. edu. cn.

Foundation items: The National Science Fund for Distinguished Young
Scholars (No. 60425206), the National Natural Science Foundation of China
(No. 60633010), the Natural Science Foundation of Jiangsu Province(No.
BK2006094) .

Citation: Cao Jing, Xu Baowen, Zhou Yuming. Shrek: a dynamic object-ori-
ented programming language[J]. Journal of Southeast University (English
Edition) , 2009, 25(1):31 —-35.

codes into bytecodes. Interpreter is the execution engine. It
runs as a thread so that many interpreter instances can ex-
tract bytecodes from different method objects, and execute
them concurrently. They share the same object space and are
mutexed through critical sections. The console accepts in-
put, calls the compiler to parse it, then starts an interpreter
thread to run it (other interpreter threads may be created
during its running), and finally reports the execution results.

Class information Console
window
Debugging Interpreter Interpreter | ... |Compiler
tools kit thread thread
[Object space]

Fig.1 The architecture of Shrek program development envi-
ronment

The class library of Shrek currently includes thirty-four
classes which can be classified as basic classes, numerical
classes, container classes, character classes, input/output
classes and thread classes.

1 Object Model and Dynamic Features

Fig. 2 (a) shows the object model of Shrek. Excluding
integer objects, an object is composed of two parts. One part
is an array storing the value of the object. The array can be
split into a head region and a field region. The hash value,
object’s size and its class pointer are stored in the head re-
gion separately. The stored size of an object excludes the
size of head region. So its real size is the stored size plus
three.

The other part is an entry of the object table, which is
composed of the idle tag field, the reference counter field,
the mark tag field, and the object handle field. When we
want to allocate a new object, we must first find an idle table
entry indicated by the idle tag. If there is no such entry, the
new object cannot be allocated. If not, object-space allocates
an array, saves its address in the object handle field, sets the
idle tag as false, and returns the index of the entry. So the
maximum number of active objects is decided by the size of
the object table, which is 32 768 in the current version. A
variable pointing to an object actually contains the index of
the entry in the object table. The structures of the class ob-
ject and the method object are shown in Fig. 2 (b) (omit
their object table entry).

The reference counter of an object records the number of
other objects referring it at runtime. An object is recycled
when its reference counter is zero, and its entry in the object
table is also recycled (set idle tag as true). The reference
counting algorithm can collect garbage immediately, but can-

32

Cao Jing, Xu Baowen, and Zhou Yuming

Object table
_ Ildletag
Reference count
" Mark tag_
6bj_e;:ﬁ1_a_nale——> Hash value
Head{ | Obfestsize
Class
Idle tag Fields
Reference count
_Mark tag Object
Object handle

(a)

Method
Object head
Class Method name
Object head __Bytecode
Literals
Superclass Stack size
Class name | [Variable number
Field number Class
Fields Text
Method tabld Nativeness tag

(b)

Fig.2 Object model and structures. (a) Object model; (b) Structure of class and method

not reclaim cycle objects. Therefore, we also adopt a mark/
sweep algorithm as a complement. Every object table entry
has a mark tag field. When there is no idle entry, mark
phase marks all active objects in object space through root
objects, then sweep phase recycles unmarked objects.

Shrek has two primary dynamic features—dynamic typ-
ing and dynamic binding. The type of Shrek variable is re-
solved at runtime. Fig. 3 shows the structure of the value of
a variable. The size of the value is 16 bits of which the low-
est bit is a tag. If its value is zero, then the highest 15 bits
contains an index of some object in the object table, through
which we can acquire the object. Its class field contains the
entry index of its class. We can acquire the class object
alike, and then we know the type of the variable. If the val-
ue of the tag is one, the variable’s type is Integer and the
highest 15 bits contains the integer value based on comple-
ment encoding. So the current range of Integer is between
- 16 384 and 16 383.

16 bits
The highest 15 bits Tag

Fig.3 The structure of a variable’s value

All the Shrek methods are virtual, and method binding
occurs runtime-wise as follows: 1) Acquire the method table
of receiverClass(the class of the called object), look up the
method whose name matches with the selector(the name of
the message) . If the method is found, return it. If not, go to
the next step; 2) Check receiverClass. If receiverClass is Ob-
ject, go to the next step. If not, acquire the superclass of re-
ceiverClass; assign the superclass to receiverClass, and go
to 1); 3) Clear arguments(an array including arguments);
store selector into it; let selector equal “message: notRecog-
nizedWithArguments: ”, and go to 1).

From this, if the method lookup fails according to the
original selector, the procedure will give up and try to find
another method matching with “message: notRecognized-
WithArguments: ”. The method is defined in Object which
is the superclass of every other class. Therefore, it can be
found definitely, and its function is to output the method
lookup failure error.

2 Native Method and Structural Reflection

Some platform-dependent operations such as I/O opera-
tions, thread operations, etc. cannot be implemented as
Shrek methods, but we can use a non-Shrek language(Java
language) to implement them and call these native meth-
ods'"” in Shrek methods. Many methods in class 10 and
class SThread are declared as native methods, such as the
following method which writes a byte to output the stream
object.

@ writeByte: aByte
end

Native methods should be declared in Shrek class and
implemented using Java. The declaration of a native method
begins with “@ ” followed by a method signature. Because
“:” is illegal in a Java method signature, the native method
definition is the original name with “:” removed. For ex-
ample, the definition signature of the above native method
is “writeByte”. Besides the arguments in the native method
declaration, there are two more arguments which are object-
space object and receiver in its definition. The simple im-
plementation of the above method is shown as follows:

1 public Object writeByte(ObjectSpace os, Object receiver, Object anlnte-

ger) {
2 Object ioStream = os. basicAt(receiver, 3);

3 if(ioStream instanceof OutputStream) {

4 int value = os. integerValue(anInteger) ;

5 try{

6 ((OutputStream) ioStream) . write(value) ;
7 }catch(Exception e) {

8 return os. getFalseObject() ;

9 }

10 return os. getTrueObject() ;

11 Jelse{

12 return os. getFalseObject() ;
13}

14}

Line 2 acquires the 3rd field of the receiver, which is an
output stream object. Line 4 acquires the value which
should be written out. Line 10 returns true. Line 12 returns
false if the variable ioStream is not an output stream object.

The Shrek classes declaring native methods should dy-
namically load the Java classes defining these native meth-
ods in the initialization method as shown below:

Shrek: a dynamic object-oriented programming language

33

initialize
Shrek loadJavaClass: "IO". //load Java io. class
end

As described in Ref. [13], a reflective computational sys-
tem is one in which implicit aspects of the system’s struc-
ture and behavior are available for explicit inspection and
manipulation. As described in Refs. [14 —15], according to
the reflection mode, there are two different models of re-
flection: behavioral reflection and structural reflection. Be-
havioral reflection is concerned with the reification of com-
putations and their behavior. In contrast, structural reflec-
tion reifies the structural aspects of a program. According to
reflection capability, there are two kinds of reflection: intro-
spective reflection and intercessive reflection. Introspective
reflection supports obtaining information at runtime about
elements of the program under execution, without changing
the program. For instance, in Java one can know at runtime
the class of an object which one did not know before!".
But Java does not have an intercessive reflection capability.
Intercessive reflection supports changing the program during
execution. For instance, Smalltalk allows the programmer to
create a code that inserts a new method into a class at runt-
ime''.

Shrek supports intercessive structural reflection so that it
allows the following operations at runtime:

e Acquiring an object’s class, just as the statement
“aClass = anObject class. ” does.

e Acquiring class’s fields, just as the statement “fields =
aClass fields. ” does.

e Acquiring class’s methods, for example, the statement
“aMethod = aClass methodNamed: # print. ” gets method
“print”.

o Creating class dynamically, for example, the statement
“Object addSubclass: #Point fields: “x y”.” creates class
Point whose metaclass is Class and whose superclass is Ob-
ject. Class Point contains x and y.

e When adding a new method in a class, for example, if
one execute the statement “Point addMethod. ”, then one is
waiting for entering a new method. After the method is en-
tered, it will be parsed and added to the method table of
Point.

e Modifying a method, for example, one can execute the
statement “Point editMethod: #print. ” to change the func-
tion of method print.

Reflection simplifies Shrek and makes it easy to enhance
Shrek by expanding its class library, without modifying its
syntax. For example, class Mixin implemented by using re-
flection supplies Shrek with parameterized inheritance abili-
ty''®". Aspect-oriented programming can also be implemen-
ted in Shrek by using reflection''”

3 Metaclass Programming

In Shrek, there are two relations between classes. One is
the inheritance relation between classes, and the other is the
instantiation relation between a class and its metaclass"’ .
Fig. 4 shows part of class instantiation and the inheritance
structure of Shrek. As shown, the most important two clas-
ses are Object and Class. Object, the root of the inheritance
tree, has no superclass and AbstractClass as its metaclass.

Class, the root of the instantiation tree, has Object as its su-

A
o Boolean
Magnitude A 4
4 /’
‘ True False
Char
Integer
— Instantiation; - Inheritance

Fig.4 Part of class instantiation and inheritance structure of Shrek

perclass and itself as its metaclass.

The function of class is to model the behavior of its in-
stance. We can customize class’s behavior through program-
ming its metaclass. For example, Java supports abstract
class which cannot instantiate concrete objects by using
keyword “abstract”. But Shrek can achieve this without
modifying syntax. Classes which are the instances of Ab-
stractClass play the role of abstract class. AbstractClass is
the subclass of Class, and its definition is shown as follows:

class AbstractClass < Class

new
Shrek error: "Class " + self name toString + " cannot make an
Instance. ".
end

end

It overrides method new, therefore if its instances such as
Object are asked to create new instances, error message will
be printed. As shown in Fig. 4, Object, Boolean, Magnitude
and Number are instances of AbstractClass; Char, True,
False and AbstractClass are instances of Class.

Programming with metaclass has two symmetrical kinds
of compatibility issues caused by inter-lever communica-
tion!"” . They are: 1) Upward compatibility issue. As shown
in Fig. 5(a), MetaA and MetaB are metaclasses of A and
B, respectively. A defines method i-foo which calls method
c-bar defined in MetaA. If B inherits A, but MetaB does not
inherit MetaA, then B cannot respond to a c-bar message
sent by its instances; 2) Downward compatibility issue. As
shown in Fig. 5(b), MetaA defines method c-foo which
calls method i-bar defined in A. If MetaB inherits MetaA,
but B does not inherit A, then instances of B cannot respond

A>>1-foo MetaA ? MetaB
" self class c-bar T <c-bar> T

MetaA >>c-foo

" self new i-bar A T
A ? B
<i-bar>
(b)
— Instantiation ; ---#-Inheritance

Fig.5 Upward and downward compatibility

34

Cao Jing, Xu Baowen, and Zhou Yuming

to a message i-bar sent by B.

There are two problems in existing metaclass compatibili-
ty guarding mechanisms. One is that they cannot guard up-
ward and downward compatibility simultaneously, such as
SOM™ ' and NeoClasstalk''"". The other is that they may
be so strict that their expressiveness is weak, such as
CLOS"""™ and Smalltalk-80™"". Shrek adopts non-strictly
parallel single inheritance to guard compatibility'”. As
shown in Fig. 6, there are three inheritance ways, they are:
class owns the same metaclass as its superclass(see Fig. 6
(a)); the metaclass of a class inherits the metaclass of its
father directly(see Fig. 6(b)); the metaclass of a class in-
herits the metaclass of its father indirectly(see Fig. 6(c)).
The non-strictly parallel single inheritance is coherent for
Shrek, and it is easy to prove that any class in the inherit-
ance structure is compatible with its metaclass.

MetaClassA

N

ClassA <«--—-—-- ClassB

MetaClassA €« ————— MetaClassB

ClassA <€----- ClassB
(b)
MetaClassA < - .- <« - MetaClassB

T T

ClassA <€————-

—» Instantiation ; --# Inheritance
Fig.6 Non-strictly parallel single inheritance of Shrek

4 Conclusion

Shrek is a purely object-oriented dynamically strongly
typed programming language which supports safe metaclass
programming, intercessive structural reflection, native meth-
ods, multi-thread programming, automatic garbage collec-
tion, etc. But recently, it has been found that Shrek has
some shortcomings. For example, it does not support ex-
ception; its index of object table is only 15-bits; its class
library is poor, etc. In the future, we are going to perfect
Shrek language, increasing its feasibility and making it a
platform for language research.

Appendix The syntax of Shrek

classDefinition: : =
[comment] classHead [comment] [fieldsDefinition]
[comment] {methodDefinition} * “end”

classHead: : = “class” [metaclassName: :] className
“<” className

fieldsDefinition: : = “fdef” [fieldName {“,” fieldName }
] “end”

methodDefinition: : = normalMethodDefinition |
nativeMethodDefinition

normalMethodDefinition: : =
messagePattern temporaryDeclaration methodBody
“end”’ nativeMethodDefinition: : =
“@ ”(unaryMessagePattern | keywordMessagePattern)
“end”

messagePattern: : = unaryMessagePattern
| binaryMessagePattern | keywordMessagePattern
unaryMessagePattern: : = methodName
binaryMessagePattern: : = binarySelector parameterDeclara-
tion
keywordMessagePattern: : =
methodName*: ” parameterDeclaration {methodName
“:” parameterDeclaration} *
temporaryDeclaration: : = | ” {temporaryName} *
methodBody: : = {[comment] statement}
statement: : =[“"’] expression “.”
Expression: : = assignmentExpression | messageExpression
assignmentExpression: : = targetVariable “ =" expression
targetVariable: : = fieldname | parameter | temporary
| symbol
messageExpression: : =term message {*;” message}
message: : = unaryMessage | binaryMessage
| keywordMessage
unaryMessage: : = messageName
binaryMessage: : = binarySelector(term unaryMessage
\ “(” expression “)”)
keywordMessage: : =
{messageName*: ”(term binaryMessage |
“(” expression “)”) }*
term: : =“(” expression “)” \ block \ primitive \
variable | Literal
block:: =“[” {blockTemporaryDeclaration} *
{statement} = “]”
blockTemporaryDeclaration: : = “: ”temporaryName
primitive: : =“ <” number {variable} = >
variable: : = fieldname | parameter | temporaryName
| globalVariableName
Literal: : = ArrayLiteral | IntegerLiteral | FloatingPoint-
Literal | BooleanLiteral | CharacterLiteral |
StringLiteral | SymbolsLiteral | NullLiteral
ArrayLiteral: : = “#(” {Literal} * “)”//for example,
#(“food” “taxes”)
BooleanLiteral: : = “true” | “false”
CharacterLiteral: : =“‘” ascii “’”//for example, ‘a’
StringLiteral: : =*“*“” text “””//for example, “hello”
SymbolsLiteral: : = “#’Identifier//for example, #bill
NullLiteral: : = “nil”

@ |

@ | 9

29

Comment: : = singleLineComment | multiLineComment
singleLineComment: : =“//” text
multiLineComment: : =/ % text “ %/

References

[1] Kay A C. The early history of smalltalk[J]. ACM SIGPLAN
Notices, 1993,28(3):69 —95.

[2] Goldberg A, Robson D. Smalltalk-80: the language and its
implementation| M] . Massachusetts: Addison Wesley, 1983.

[3] Scott M L. Programming language pragmatics[M].2nd ed.
Morgan Kaufmann Press, 2005.

[4] Friedman D P, Haynes C T, Wand M. Essentials of pro-
gramming languages [M] . 3rd ed. MIT Press, 2008.

[5] Meijer E, Drayton P. Static typing where possible, dynamic
typing when needed: the end of the cold war between pro-
gramming languages|[C]//OOPSLA Workshop on Revival of
Dynamic Languages. New York: ACM Press, 2004.

[6] Bracha G, Cook W. Mixin-based inheritance [C]//Proc

Shrek: a dynamic object-oriented programming language 35

Joint ACM Conference on Object-Oriented Programming, [13] Smith B C. Reflection and semantics in Lisp[C]//Proc of
Systems, Languages and Applications and the European the 11th ACM SIGPLAN-SIGACT Symposium on Principles
Conference on Object-Oriented Programming. New York: of Programming Languages. New York: ACM Press, 1984:
ACM Press, 1990: 303 - 311. 23 -35.

[7] Ancona D, Lagorio G, Zucca E. Jam—designing a Java ex- [14] Maes P. Concepts and experiments in computational reflec-
tension with mixins[J]. ACM Transactions on Programming tion[C]//Proc of the 2nd ACM SIGPLAN Conference on
Languages and Systems, 2003,25(5):641 —712. Object-Oriented Programming, Systems, Languages, and Ap-

[8] Bouragadi N. Safe metaclass composition using mixin-based plications. New York: ACM Press, 1987: 147 — 155.
inheritance[J] . Journal of Computer Languages, Systems and [15] Ferber J. Computational reflection in class based object ori-
Structures, 2004,30(1/2):49 —61. ented languages[C]//Proc of the 4th ACM SIGPLAN Con-

[9] Forman I R, Danforth S H. Putting metaclasses to work ference on Object-Oriented Programming, Systems, Langua-
[M]. New York: Addison Wesley, 1998. ges, and Applications. New York: ACM Press, 1989: 317 —

[10] Graube N. Metaclass compatibility [C]//Proc of the 4th 326.

ACM SIGPLAN Conference on Object-Oriented Program- [16] Sullivan G. Aspect-oriented programming using reflection
ming, Systems, Languages, and Applications. New York: and metaobject protocols[J]. Communications of the ACM,
ACM Press, 1989:305 - 315. 2001,44(10):95 -97.

[11] Bouraqadi N, Ledoux T, Rivard F. Safe metaclass program- [17] Kojarski S, Lorenz D H. AOP as a first class reflective
ming[C]//Proc of the 13th ACM SIGPLAN Conference on mechanism[C]//Proc of the 19th ACM SIGPLAN Confer-
Object-Oriented Programming, Systems, Languages, and Ap- ence on Object-Oriented Programming, Systems, Languages,
plications. New York: ACM Press, 1998: 84 —96. and Applications. New York: ACM Press, 2004:216 —217.

[12] Cao Jing, Xu Baowen. Safe metaclass programming based on [18] Kiczales G, Rivieres J, Bobrow D G. The art of the metaob-
non-strictly parallel single inheritance[C]//Proc of the S5th Jject protocol[M] . MIT Press, 1991.

Conference on the Development and Education of Program- [19] Gosling J, Joy B, Steele G, et al. The Java language specifi-
ming Languages. Beijing: Tsinghua University Press, 2006: cation [M].3rd ed. New York: Addison Wesley, 2005.

19 —26. (in Chinese)

Shrek: — MBS HRBIXMN REFIZITIES
‘g, 5%1,3 ’%"}iizﬁ)gl-@ﬁflsz'3
(" R FENA L TRFR, EF 210096)

CHAHTRRFHIMAFERRZ, K 210093)
(TR AR R AT, dr i 210096)

BE AR RONA , A G @ AR X E T LA A ER R, wC++ R LHFTE,Java o C#Y
ERERRESEE. A %3t T — 2 5% 15T Shrek, ¥ AP E T HBAETERA—LE—AFHF . — &K
AR T AL Shrek B A A TR T o@m O &2 , MAHSRERRL, KA T 5 Mixin 4845469 ¢ 4
AWM. ZEE BA MR- AT R M, A LM R AT) e AT 2 2 LR R ARG AN, E
RIHFLEBERF XA AHER e, BT R T EPR R RHIGRT A SO RERD. ZBTWRAEAR
G2 EI, KB T %5 B AR

KBRS LR LR FET ;RS Aoy ik e st $ 2 5% E S

FESZES:TP312

