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Abstract: Frame erasure concealment is studied to solve the
problem of rapid speech quality reduction due to the loss of
speech parameters during speech transmission. A large hidden
Markov model is applied to model the immittance spectral
frequency (ISF) parameters in AMR-WB codec to optimally
estimate the lost ISFs based on the minimum mean square error
(MMSE) rule. The estimated ISFs are weighted with the ones of
their previous neighbors to smooth the speech, resulting in the
actual concealed ISF vectors. They are used instead of the lost
ISFs in the speech synthesis on the receiver. Comparison is made
between the speech concealed by this algorithm and by Annex I
of G.722.2 specification, and simulation shows that the proposed
concealment algorithm can lead to better performance in terms of
frequency-weighted spectral distortion and signal-to-noise ratio
compared to the baseline method, with an increase of 2. 41 dB in
signal-to-noise ratio ( SNR) and a reduction of 0.885 dB in
frequency-weighted spectral distortion.
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n the transmission of speech signals on the Internet, some
I packets may be lost. We may apply the commonly used
methods to deal with the packet loss, namely, automatic re-
transmission request ( ARQ) and forward error correction
(FEC) . Due to the instant property of voice communication,
ARQ is not applicable to this problem because it takes extra
time. FEC needs to increase the transmission bandwidth, and
it is also not practicable because of the limited bandwidth on
the Internet currently. So frame erasure concealment is usu-
ally made by reconstructing the lost frame parameters of
coding speech on the receiver.

The simplest receiver-based frame erasure concealment is
to repeat the parameters of the previous frame, and it makes
use of the short-term stability of speech . Ehsan and Kubin'"

put forward a measure of the short-term stability of speech.
The repetition-based approach is straightforward, but it does
not utilize the statistical evolution of speech and thus has
poor effect. Vaillancourt et al. ™! presented a method for re-
synchronizing the glottal pulse after an erased frame. The
method can be applied with or without additional side infor-
mation. Thyssen et al. ™! brought forward methods to update
the G. 722 subband decoder state memory during frame era-
sure.

In this paper, a large hidden Markov model( LHMM) is
used to model the immittance spectral frequency ( ISF) qa-
rameters in the AMR-WB speech coder. The lost ISFs are
optimally estimated based on the MMSE rule. The speech
segments concealed with different methods are compared,
and simulation shows that this algorithm can lead to better
performance in terms of frequency-weighted spectral distor-
tion and signal-to-noise ratio compared with the baseline
method.

1 Baseline Frame Erasure Concealment

In AMR-WB G.722. 2", every speech segment of 20 ms
is divided into four subframes to be analyzed, and parame-
ters are obtained for each subframe, including linear predic-
tion( LP) filter coefficients, adaptive codebooks and their
gains, fixed codebooks and their gains, etc. The LP filter co-
efficients are converted to the immittance spectral pair( ISP)
representation for quantization and interpolation purposes.
The LP filter coefficients are quantized using the ISP repre-
sentation in the frequency domain, that is, ISF. The ISF vec-
tor is given by f' = {f,, f,, ..., fi;} with T denoting trans-
pose.

The frame erasure concealment in AMR-WB G. 722. 2
Annex 1" is used as the baseline. It is based on the state
machine as shown in Fig. 1.
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Fig.1 State machine
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The system starts in state 0. Once a bad frame is detec-
ted, the state counter is incremented by one and is saturated
when it reaches state 6. And once a good speech frame is
detected, the state counter is decreased by one. When BFI =
1(BFI: bad frame identifier), prevBFI =0 or 1, state =1, 2,
..., 6, an error is detected in the received speech frame and
the frame erasure concealment is started by
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ISF, (i) = apast_ISF, (i) + (1 - a)ISF,,.(i)
i=0,1,...,16 (1)

where o = 0.9; ISF (D) is an ISF vector for a current
frame; past _ ISF e is an ISF vector from the previous
frame. ISF, . (i) is a combination of adaptive mean and

constant mean ISF vectors in the following manner:

ISFmean( i) = B ISFCOI]S‘,I“SZIH( i) + ( 1 —ﬁ) ISF&dﬂpIiVE,mEﬂﬂ( l.)
i=0,1,...,16 (2)

2
where B = 0.75; ISF, 000 men (D) = %Z past_ ISF (i)
i=0

and is updated whenever BFI =0; ISF
containing long time average of ISF vectors.

AMR-WB speech coding is based on code-excited linear
prediction ( CELP). Due to the prediction property, error
propagation will occur when some frames are lost. Fig. 2
shows that, when the frame erasure rate is 20% , the wave-
forms of the concealed speech segment and the original one
are clearly different. There are annoying artifacts in the con-
cealed speech.

(a)
(b)
Fig. 2 Comparison between the original speech and the

concealed speech. (a) Original speech; (b) Speech concealed by
Annex I

(i) is a vector

const_mean

2 LHMM-Based Frame Erasure Concealment

The application of the HMM was first introduced on
speech recognition in detail by Rabiner and Juang' . Rod-
bro et al. " applied the HMM in the frame erasure conceal-
ment in VoIP. A sinusoidal analysis-synthesis model is em-
ployed, and there is no error propagation in this model.

In this paper, the states of the HMM may be as many as
64 to 128, so the HMM is called a large hidden Markov
model. It has the continuous distribution functions of obser-
vation ISFs. The LHMM was first successfully applied in
phoneme recognition and very low-rate speech coding'*™ .

2.1 Concealment of ISFs

Due to the prediction property of ISFs, we can only make
use of the ISPs, which have been received correctly, to es-
timate the lost ones. Assume that t — 1 ISFs, ¢, ..., ¢, ,,
have been received correctly. The  — 1 ISFs are used to es-
timate the z-th lost ISF. First, we compute the conditional

probability p(¢, \ @5 ,_y) aS
N
ple e o) = 2_117(%5, =nle...e.) =
N
S pe, IS, =mp(S, =nle,....o.) (3)
n=1

The second equality is due to the first-order Markov as-
sumption, with N denoting the state number. A forward var-

iable is defined as

a,(n) =p(S,=n\¢l,...,¢,,l) 4)

and a backward variable as

B(n) =p(S, =n, ¢ ..., ¢) (5

They are the different states of the HMM. When B,_,(n) (n
=1,2,...,N) are available,

a(n) = Za,mli‘,_l(m) (6)

where a,, is the transition probability, and a
1S, , =m).

With similar manipulation, when «,(n) and ¢, are availa-
ble, B,(n) can be calculated by

=p(S, =n

mn

B.(n) =p(S,=nle,....@) =
p(S, =nle. ..o )ple ]S =n

N
S 0(S, =1 pre e )P |5, = 1
n=1
namely
a_(mple, |8, =n)

B(m) = (7
e (mple, | S, =n

Assuming that «,(n) is the initial state distribution, with
Eq. (6) and Eq. (7), we may obtain «,(n) recursively.

In Eq. (3), the conditional probability, p(¢, \ S, =n), can
be acquired through a training procedure. It is modeled with
the Gaussian mixture model as

M
p(¢r ‘Sl = n) = 2 anN(gor’Mnk’Enk) (8)
k=1

where M denotes the number of mixture Gaussian func-
tions, which is usually confined in the range of 2 to 10. ¢,

is the weighted coefficient of the k-th Gaussian function,
M

with z ¢, =1l.u, and X, are the mean and covariance
k=1

matrices of the k-th Gaussian function, and 3, is often cho-
sen to be diagonal. Parameter set {c,,u ., } is trained
with the EM algorithm as

{5 Snk} = arg maxEg[logp(e,/¢ st s 2,0) 1
Coo Mo Xt

(9)
On the condition that the past t —1 ISFs, ¢,, ..., ¢,_,, are
received, the density function of the lost ISF, ¢,, is deter-
mined by
N M
e len e = X la(my N g, 3.0]
n=1 k=1
(10)
Based on the MMSE rule, the optimal estimation of ¢, is

N M

= zat(n)( 2 énl<’2nk)

n=l =
(11)

e, =Elg e, ..ol
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In order to smooth the decoded speech, the estimated ISF
is weighted with that of the previous frame:

©,=0.8¢, , +0.2¢, (12)

2.2 Computational complexity and memory require-
ments

We assume that two consecutive frames at most are lost.
The number of Gaussian mixture functions is M =3 and the
state number N =64. Six correctly received frames are used
to estimate the lost parameters. The HMM model can be
trained off-line, so it is not included in the computation.
The computational complexity and memory requirements
are estimated as below:

The majority of the calculation comes from computing
a,(n) and B,(n) recursively. The multiplication amounts to
about N°D(k, + k,), and an order of magnitude is 10° in
this scenario, where D denotes the dimension. The computa-
tional complexity in this paper is much higher than that in
the baseline algorithm, while the extra algorithmic delay
does not hinder ordinary voice communication. Memory
consumption results from three training parameters: transi-
tion matrix A ( N° words), mean-value vector u, ( MND
words), and covariance matrix 3, ( MN°D words). Add in
some temporary computation results, and then the total
memory requirement is no more than 3 x 10° words.

3 Evaluation Standards

Two standards are used to compare the proposed algo-
rithm with the baseline:

1) Signal-to-noise ratio(SNR) SNR is used to evaluate
the speech difference between the processed speech and the
initial speech,

N
PIE

SNR = 10lg —“——— (13)

where N is the number of speech samples. As for a segment
speech of T s, N =16 000T; x, is the sample amplitude of
the processed speech, and £, is the amplitude of the con-
cealed speech.

2) Spectral distortion( SD)  The other standard is the
perceptually-based frequency-weighted spectral distor-
tion""”". With a small modification, SD between the con-
cealed and the initial ISFs of wideband speech is obtained

by

n

1 7 000 5 ‘A(f) ‘2 2
SD, (A.(2),A(2)) =J > W 101
o i % oy

(14)

where A (z) and A(z) are the concealed and the initial LPC
filters; 7 000 denotes the speech bandwidth(Hz); W, is the
sum of the weighting factors, and the weights use the Bark
weighting defined by

We(f) = 1 2_0.69 (15)

25 +75 [1+1.4(ﬁ) ]

4 Simulation
4.1 Gilbert channel

The Gilbert channel'" (see Fig. 3) is adopted to model
the Internet channel. P, p, O, ¢ and e are given different
values to describe the channels. G indicates good state, and
B indicates bad state. P, p, Q and g are the transition proba-
bilities between states, with QO+ P =1 and p + g =1. e is the
frame loss ratio.

P
q
0 p
Fig.3 Gilbert channel model

The parameter configurations of the Gilbert model in this
simulation are set in Tab. 1. In the table, the average frame
erasure ratio, f, is calculated by

erasure ?

P

asure = e 16
Fome = 5 (16)
Tab.1 Parameter configurations of the Gilbert channel
Configuration P p e Serasure” P
1 0.1 0.2 0.6 15.0
2 0.2 0.3 0.6 20.0

4.2 Simulation results

In order to reduce the calculation and accurately describe
the ISFs, we choose N = 64. For simplicity, no more than
two consecutive frames are lost. We determine M = 3. The
LHMM is trained in advance. Since there is no ready-made
wideband speech database, we use English speech of about
30 min downloaded from the Internet to train. After train-
ing, the parameters of the HMM are obtained. It can be seen
that the transition matrix dominates diagonally.

In the speech synthesis on the receiver, for the purpose of
comparison, all the other lost parameters except the ISFs of
the erased frames are concealed according to G.722.2 An-
nex I. Then we choose a segment of speech of about 2 s.

In the simulation of the first parameter configuration, 13
frames are lost; the SNRs of the two algorithms are respec-
tively SNR, =16. 37 dB, SNR,,,,,, = 18. 62 dB, and the SNR
gain between them is 2. 25 dB. In the simulation of the sec-
ond parameter configuration, 18 frames are lost; the SNRs
of the two algorithms are respectively SNR, = 16. 86 dB,
SNR, = 19.43 dB, and the SNR gain between them is
2.57 dB. The average increase in the SNR is about 2. 41 dB
in the two parameter configurations.

The spectral distortions of each concealed ISF in the two
parameter configurations are displayed in Fig. 4. For the pur-
pose of comparison, the spectral distortions of the ISFs of the
baseline are also displayed all together. We can see that the
spectral distortions by the proposed concealment is generally
less than that by Annex I. In the first simulation, the average
difference between them is 0. 648 dB. In the second, the aver-
age difference is 1. 123 dB. The average reduction in spectral
distortion is about 0. 885 dB in the two cases.
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Fig.4 Spectral distortions. (a) Configuration 1; (b) Configuration 2

5 Conclusion

The traditional frame erasure concealment algorithm
makes use of the correlation of parameters to some extent,
but it does not apply statistics characteristics and evolution
of speech parameters. In this paper, an LHMM is used to
model the ISFs of wideband speech, and the correctly-
received ISFs are employed to estimate the lost ISFs. Simu-
lation shows that the algorithm has some advantages over
the baseline in terms of signal-to-noise ratio and perceptual-
ly weighted spectral distortion.
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