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Abstract: A nonparametric Bayesian method is presented to
classify the MPSK ( M-ary phase shift keying) signals. The
MPSK signals with unknown signal noise ratios ( SNRs) are
modeled as a Gaussian mixture model with unknown means and
covariances in the constellation plane, and a clustering method is
proposed to estimate the probability density of the MPSK signals.
The method is based on the nonparametric Bayesian inference,
which introduces the Dirichlet process as the prior probability of
the mixture coefficient, and applies a normal inverse Wishart
(NIW) distribution as the prior probability of the unknown mean
and covariance. Then, according to the received signals, the
parameters are adjusted by the Monte Carlo Markov chain
(MCMC) random sampling algorithm. By iterations, the density
estimation of the MPSK signals can be estimated. Simulation
results show that the correct recognition ratio of 2/4/8PSK is
greater than 95% under the condition that SNR >5 dB and 1 600
symbols are used in this method.
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he ability of detecting an unknown modulated signal
T and recognizing its modulation type is an important fea-
ture in communication intelligence. This feature is usually
referred to as modulation classification and modulation rec-
ognition'"’. Much attention has been paid to its key applica-
tion in adaptive modulation, software defined radio, and
cognitive radio'”’ .

MPSK modulation has been extensively used in shortwave
communication, satellite communication and mobile commu-
nication. The modulation classification of MPSK signals has
important applications in interference recognition and spec-
trum supervision. Hence, it is worthy of intensive research.

It is robust to utilize the constellation plane as the charac-
teristic for modulation classification™ . Refs. [4 — 5] exploi-
ted the aggregation property of the received signals scattered
in the complex plane, and used the c-mean clustering meth-
od and the blur c-mean clustering method to classify the sig-
nals respectively. But the premise of the algorithms is that
the clustering number is previously known.

In this paper, we use the method of nonparametric Bayes-
ian inference to cluster the MPSK signals, and obtain the
classification number M according to the cluster results. The

Received 2008-10-17.

Biographies: Chen Liang(1977—), male, graduate; Wu Lenan( correspond-
ing author) , male, doctor, professor, wuln@ seu. edu. cn.

Foundation item: Cultivation Fund of the Key Scientific and Technical In-
novation Project of Ministry of Education of China(No.3104001014).
Citation: Chen Liang, Cheng Hanwen, Wu Lenan. Modulation classification
of MPSK signals based on nonparametric Bayesian inference[ J]. Journal of
Southeast University ( English Edition), 2009,25(2):171 —174.

main advantage of this algorithm is that it allows the number
of clustering components to grow as the size of the signal set
grows without assuming a fixed number of components.

1 Problem Specification

The MPSK equivalent baseband signal y(n) suffers from
residual baseband channel effects, timing errors, phase jitters
and carrier frequency offset, etc. To facilitate our analysis, in
this paper, we assume an ideal working condition with only
the presence of white Gaussian noise G(n), where the chan-
nel has been adequately equalized, the residual channel
effect is negligible, symbol timing and carrier frequency
have been successfully estimated. Under these assumptions,
the received sequence can be rewritten as

y(n) =Ax(n) +g(n) (1)

where x(n) is the signal sequence, and A is an unknown
amplitude factor.

According to Eq. (1), y, conforms to a two-dimensional
Gaussian distribution in the complex plane, y, ~N(u,, A,),
in which the mean g, equals a certain constellation center of
MPSK [,(1 =1,2, ..., M), and the covariance A, is deter-
mined by the SNR. Hence, all the received signals Y =
{y,.,} can be considered to be generated by a Gaussian mix-
ture model with M components.

The classification problem can be specified as follows: we
have n measurements ¥ = {y, ,} that are distributed as a
mixture density. The probability model can be expressed as

M
Y|7 0,....0, ~ Y 7NY|60,)
k=1 y
m € {(m, 7m0y c0nmy) |7, =0, Z"Tk =1} (2)
k=1
where 6, 2 (u,,A,) is the mean u, and the variance A, of
the k-th Gaussian component, and 77, is the mixture coeffi-
cient. Because M and the SNR of the MPSK signals are un-
known, the total number of components M, the parameter
(., A;) and the mixture proportion 77, are all unknown.
However, it is known that each measurement y, is generated
from only one of the components of the mixture. Hence, the
problem is to classify or cluster the received signals with re-
gard to the mixture components that generate them.

The Gaussian mixture model was first proposed to model
any continuous density involving problems of density esti-
mation'” . In this paper, we use it to model the MPSK sig-
nals with unknown M and the SNR. To cluster the signals
and identify the classification number M, the nonparametric
Bayesian inference method is applied, which will be further
described in section 2.
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2 Clustering Method Based on Nonparametric
Bayesian Inference

The Bayesian theorem is represented as
P(6, |y) <Py, | 6,)P(6) (3)

where @, is the estimated parameter, P(#,) is its prior distri-
bution, y, is the observed value, and P(y, | @,) is the likeli-
hood of @,. In the classification problem of unknown classi-
fication numbers, prior distribution P(,) cannot be deter-
mined previously.

The nonparametric estimation method does not assume
any particular parametric form for prior distribution P(8,),
but instead replaces it with a general distribution on a family
of probability distributions. Many methods involve families
of computationally tractable distributions on such prior prob-
ability distributions, while one important example is the
Dirichlet process (DP)"”'. Using the DP as a nonparametric
prior distribution for the parameters of a mixture model, the
Dirichlet process mixture ( DPM) model is induced. If the
mixture model is further assumed to be a Gaussian mixture,
it is called a Dirichlet process Gaussian mixture ( DPGM)
model'® . The DPGM model allows the number of Gaussian
mixture components to grow as the size of the data set grows
without assuming a fixed number of components underlying
the data.

In this section, the clustering method of nonparametric
Bayesian inference with the DPGM prior model is presen-
ted.

2.1 Dirichlet distribution and Dirichlet process

Given a probability measure G, on a measurable space
(T,A) and a positive real number «, a probability distribu-
tion G distributed according to a DP of base distribution G,
and a scale factor «, denoted as G ~ DP(G,, «), satisfies,
for any partition A, A,, ..., A, of T and any k,

(G(A)), ...,G(A,)) ~D(G,(A)), ...,G,(A), ) (4)

where D is a standard Dirichlet distribution'”. Ref. [9] es-
tablished that the realizations of a DP are discrete with prob-
ability one and admit stick-breaking representation:

G() = Y ms, (5)

k-1

with 8, ~G,.B, ~B(1,) andm, =B, J] (1 -B,) . where
Jj=1
6,, denotes the Dirac delta measure located in 6),.

The main advantage of the DP is the simplicity of the

posterior update using its conjugate property. Let @,, ..., 0,
be n random samples from G, and G ~ DP(G,, a), then the
posterior distribution of G | @,., is also DP:
| 2
Gle,, ~ DP( a 6
6., a+nGO+a+n;5"*’a+n) (6)

Moreover, by integration out G, the predictive distribu-

tions admit the following Polya urn representation'” :

I 35, +—2—G, (7)

o +n o +n

0;1+] ‘0'1 ~

2.2 Normal-inverse-Wishart analysis

If a multivariate Gaussian mean and covariance are both
uncertain, the normal-inverse-Wishart ( NIW) provides an
appropriate conjugate prior. The covariance matrix is as-
signed an inverse-Wishart prior A ~ IW(p, A). Conditioned
on covariance matrix A, the mean u/A ~ N(9, A/k) . Here,
J is the expected mean, for which we have the quasi obser-
vation k on the scale of observations y, ~ N(u, A). The
joint prior distribution, denoted by NIW ( «, 9, v, A), takes

the following form'"":

P Ak, v, A) « |A|7CFHD .
exp{-%tr(mm‘) - K- -9} ®

where the parameter d is the dimension of the NIW; in this
paper, d =2, since modulation classification is based on the
signal constellation in the complex plane.

The posterior distribution p(u, A \yl, LY KD v, A) s
also NIW, via conjugacy, and thus compactly described by a
set of updated hyperparameters NIW ( x, 9, v, A). These
posterior hyperparameters are equal to'""

KO =kd+ Dy, K=kKk+n (9
i=1

N
VA =vA + Y yy! + k99 —kd I v=v+n
i=1
(10)

Integrating the parameters of the NIW posterior distribu-
tion, the predictive likelihood of a new observation y,,, can

be approximated by!'""

9 (k+Dv o

~N ) U TIETS
p(ym‘yl, Y, K O v, A) (y"“"?’g(;}—d—l)A)
(11)

3 Clustering Algorithm Description

The Gaussian mixture model combined with the DP prior
is called the DPGM model. Because the number of Gaussian
components and their mean and covariance are all unknown.
From the analysis above, the base distribution of the mixture
model G, can be defined as NIW. The hierarchical DPGM
model can be described as

G~DP(G,,a), 0,|G~G, y, |6, ~N(-]0,) (12)

where G, = NIW(k,, 9, v,, 4,) -

The calculation of the posterior probability p (0,., | y,.,)
in DPGMM is too complex to obtain a close-form solution.
The MCMC method using the Gibbs sampler can provide
numerical approximation'”’. The Gibbs sampler needs to
sample from P(@, | "', y,), where "7 4 0,.,,,. According
to Bayesian equation:

P(6, 160", y)*<P(y |6)P0,[6"") (13)
Following Eq. (6), prior probability @, equals
_ REN 1 “ o
Po, =010"") = — — _1;59,_@ G

J#i

(14)
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The likelihood function f (y, | @,) is presented by Eq. (11).
The whole algorithm is described as follows:
Algorithm 1 Calculating posterior density p (@
1) Initialization
Set DP’s scale factor «;

Set (k,, 9y, vy, A,) to define the basic distribution G,;
set initial cluster and number N in the cluster.
2) Iteration

forn=2,3,..., Ny,

Take y, from N observations sequentially and the number
in the cluster which y, belongs to minus one;

Add a new cluster value @, from sampling G;

Calculate the value in all clusters: x9(Eq. (9)), vA(Eq.

(k+Dv .

k(v —-d- l)A’
Calculate P(y, | 0,) of all clusters(Eq. (11));

Calculate the prior P(@, | 8"") (Eq. (14));
Calculate posterior probability P (@, | 8", y,) (Eq.

(13));

Sample the posterior probability distribution, determine
the cluster which y, belongs to, update k9, vA of this cluster

and update the number of observations in this cluster;
End.

yl:n)

I:n

(10)) and variance

4 Simulation Results and Analysis

In this section, simulation results are given and analyzed.
The SNR changes from O to 15 dB. Initial hyperparameters
are set at small values to reflect the non-informative prior
distribution: a =4, k, =0. 1, », =6. We first assume that all
the received signals belong to one cluster and o, A, are set
as the overall mean and variance in this cluster. The initial
cluster number M =1, the simulation symbol number N =
1 600, and the iteration number N, =200.

Figs. 1 to 3 show the clustering results. One cluster is

1.0 1.0

x
(a) (b)

Fig.1 Clustering results at 3 dB, M =2. (a) BPSK generative
signals; (b) BPSK clustering results
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Fig.2 Clustering results at 6 dB, M =4. (a) 4PSK genera-
tive signals; (b) 4PSK clustering results

marked with the same symbol. It can be seen from the re-
sults that, although signals in the overlapped region are clas-
sified into wrong clusters, the final clustering number M is
not effected. So the correct clustering number can be ob-
tained under such SNR conditions, and the PSK signals are
correctly identified.
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Fig.3 Clustering results at 10 dB, M =8. (a) 8PSK genera-
tive signals; (b) 8PSK clustering results

In order to evaluate the identification probability, 100
Monte Carlo experiments are independently done for every
2/4/8PSK signals under the SNR ranging from 0 to 15 dB.
The decision rule is as follows: the clustering number N,
<3, 2PSK is decided; N, € [4, 7], 4PSK is decided;
N e =8, 8PSK is decided. The result is shown in Fig. 4. It
can be seen that the identification probability of these three
signals is above 95% when the SNR >5 dB.

100+
95

Identification probility/ %
0
IS

601 . . . . . . )
3 4 5 8 9 10

SNR/db
Fig.4 Identification probability vs. SNR for 2/4/8PSK

We further compare the average identification probability
of the proposed method with that of the method in Ref.
[13]. In Ref. [12], clustering loss functions are calculated
for M =2 and 4, respectively. And the classification number
M is decided according to the inflexion of the loss function.
This method is inflexible because it must calculate all the
loss functions of different M when M is large. Additionally,
it is difficult to determine the value of M because the func-
tion inflexion is blurry in low SNR. In the proposed algo-
rithm, the signals are clustered by the nonparametric Bayes-
ian inference, which are not assumed to be a fixed number of
components, and the clustering value M is automatically in-
volved by the inference results according to the observed
values. From Fig. 5, it is clear that the proposed method im-
proves the average identification probability of 2/4PSK,
compared with the method in Ref. [13].



174

Chen Liang, Cheng Hanwen, and Wu Lenan

a

—a— Proposed method

Average identification probability/ %

50 —o—  Method in Ref.[13]

1 | 1 I | 1 |

403 4 5 6 7 8 9 10
SNR/dB

Fig.5 Average identification comparison for 2/4PSK signals

5 Conclusion

In this paper, the MPSK signals with unknown SNR are
modeled as a Gaussian mixture signal set with unknown
means and covariances. A clustering method is proposed to
classify MPSK signals, which is based on the DPGM model,
inferred by the nonparametric Bayesian method, and calcu-
lated by the Gibbs sampling algorithm. This method is an
automatic learning algorithm and the classification number is
adaptively involved according to observation values. Simula-
tion results show that the correct recognition ratio of 2/4/
8PSK is greater than 95% under the condition that SNR >5
dB and 1 600 symbols are used.
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