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Abstract: A plane-based and linear camera calibration technique
without considering lens distortion is proposed in a greedy and
intuitive framework for the binocular camera system.
Characteristic homography matrix and consistency constraints in
close range are employed in this calibration. First, in order to
calculate the internal geometries of the cameras, total least-square
fitting as a robust tool for the geometrical cost function is
exploited to recover the accurate principal point of each camera
from all the characteristic lines of the homography matrices for
all model planes. Secondly, generic prior knowledge of the
aspect ratio of pixel cells is incorporated into the system to obtain
the exact principal length in each camera. Thirdly, extrinsic
geometries are accurately computed for all planar patterns with
respect to each monocular camera. Finally, the rigid
displacement between binocular cameras can be obtained by
imposing the consistency constraints in 3-space geometry. Both
simulation and real image experimental results indicate that
reasonably reliable results can be obtained by this technique. And
the proposed method is sufficient for applications where high
precision is not required and can be easily performed by common
computer users who are not experts in computer vision.
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he binocular digital camera system has been widely ap-
Tplied to close range photogrammetry and machine vi-
sion with a host of stereo applications, such as robot naviga-
tion, parts inspection, image-based rendering and creation of
three-dimensional models, etc. Due to high dependence of
the derived object data on the camera calibration process, it
is necessary to calibrate the geometry of the binocular cam-
eras including intrinsic and extrinsic parameters when two
cameras are deployed in the stereo system.

The planar pattern is employed to calibrate the binocular
camera system due to its advantages of simplicity and high
accuracy!'™ . To the authors” knowledge, a number of plane-
based linear calibration methods have been developed, which
can be classified into traditional algebraic-based calibra-
tion!™* and geometric-based calibration'*™”". In a more in-
tuitive geometric framework, the characteristic line that is
constrained to the internal geometry of a given camera is de-
duced from a planar homography matrix'"™ . Meanwhile,
generic prior knowledge about the internal geometry of the
cameras( such as the unit cell size of CCD sensors from a
manufacturers’ specs), which is related to the planar homog-
raphy matrix, should be taken into account; the influence of
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the slim fluctuations with respect to the unit cell size of
CCD sensors can be directly ignored in the calibration
process”‘ﬁ] . Furthermore, there exists an additional consis-
tency constraint between binocular cameras viewing the
same scene from different positions in 3-space geometry,
which can be incorporated to obtain accurate external geom-
etry in the given stereo setup”” ™. The authors extend previ-
ous work!”™ on single camera calibration to the binocular
case. In this paper, the characteristic properties of the planar
homography matrix are exploited to calibrate the binocular
camera system intuitively with part of the prior knowledge
about the internal geometry of the given cameras; while the
consistency constraints in 3-space geometry are adopted to
estimate the extrinsic parameters between binocular
cameras.

1 Camera Model

The finite projective camera, which can be considered as
the standard pinhole model, is used in this paper. The left
and right camera C,(i =1,2) can be assumed to have con-
stant intrinsic parameter matrices K,

al 71‘ Mﬂt
K, :[O B V(Jf] i=12 (1
0 0 1

with the principal length «; and B,(in pixels), the principal
point (u,, v,;) (in pixels) and the skew factor v, accounting
for non-rectangular pixels. We ignore the y, as a normal
camera in the following and set it to be zero because the
pixels in the CCD array can be supposed to be rectangular in
our model. Note that «; and 3, are related to the aspect ratio
k. of the pixel cell, i. e., B; = k;o;. Furthermore, k; can be
simply obtained as a special value from camera
manufacturers’ specs in a generic prior knowledge perspec-
tive. The fluctuation of the unit cell size is small enough to
be ignored in view of modern optical element manufactur-
ing. If the pixels in the CCD array can be assumed to be
square, the aspect ratio can be set to 1. The image of the ab-
solute conic(IAC) links to calibration and metric scene re-
construction, that is w, = K, 'K, ' (see Ref. [2]).

The rotation matrix and the translation vector between the
camera reference frame /,(i =1,2) and the world reference
frame 77’(j =1,2,...,J) are R, and ¢, respectively. A 3D
point P (X, Y,, Z,), which lies on a special plane(Z, =
0), projects onto image planes of both cameras. In a projec-
tive framework, we can obtain
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where R, = [r, r, t], H =KR, =K,[r, 1, t] =
[k, h) h],s is a scale factor, h;(q =1,2,3) is the g-th
column of H',i.e. h,=[h,, hy, hi]".

1q
Note that R, = [r, r, ry],ri(g=1,2,3) is the g-th

column of R3¢, =[f, ¢, £]". And H'is the plane-to-im-
age homography matrix, which reflects a point on the special
planar pattern being mapped from the world coordinates to

the image coordinates of the respective camera i.
2 Calibration Method
2.1 Planar homography matrices estimation

If J model planes with different poses are adopted to
calibrate a given binocular system, the planar homography
matrix of each pose should be estimated accurately. Each
model plane 7 with a given 2D reference pattern is used in
this algorithm. Given n = 4 point correspondences with
plane-to-image mapping, the direct linear transformation
(DLT) algorithm can be used to determine the linear solu-
tion of H] related to 7/ and its image on /,(i =1,2), which
can be an initial guess for the nonlinear refinement process.
Owing to the non-invariance of the DLT algorithm, both 2D
point sets must be normalized first to obtain more accurate
estimation'”’.

2.2 Linear solution for intrinsic parameters from the
planar homography matrices

2.2.1 Characteristic lines construction

Because the intrinsic parameters are assumed to be con-
stant, they can be obtained in a greedy scheme from the pla-
nar homography matrix. A useful characteristic of the planar
homography matrix such as the characteristic line can be
employed separately for each camera in the calibration ap-
proach'™ . For a given planar homography matrix H;, charac-
teristic line L; with the homogeneous coordinate vector { £ i
-1, F,;} can be expressed by Eq. (3). This constraint is de-
rived from H; in terms of intrinsic parameters and planar
scene orientation. And the detailed deduction of Eq. (3) for
a given camera can be seen in Refs. [7 —8]. The principal
point (u,, v,;) of the camera i satisfying the planar homog-
raphy matrix H; must lie on the corresponding characteristic
line.

Euy, -vy, +F, =0  i=1,2;j=1,2,...,J (3)
where
hi, hi, —hi K
B =k
h31 hzz - h2| h32
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2.2.2 Principal points via total least-square fitting
Due to noise, the actual characteristic lines do not inter-
sect at a point'™ . The constraint is then solved using a linear
optimization framework based on the minimization of a geo-
metrically motivated cost function. The square of the perpen-
dicular distance in the image space from the actual principal
point(u,,, v,;) for each camera i to the actual characteristic

(Ejuy = vy +F)’
E +1
least-square fitting for all characteristic lines intersected at a

point with the corresponding model planes'”, we have

line L; can be formulated by df = . By total

: Ef d _E/ . _E/F/
ZE;+1 ;{Ef+1[uni]= _,Z,‘Ef.+1 (4)
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Solving Eq. (4), the principal point (u,,, v,,) for the re-
spective camera i can be obtained accurately.
2.2.3 Principal lengths from reshaping planar homog-
raphies
According to the IAC, orthonormality of rotation matrix
R, «; and B, related by the aspect ratio k;, and the given pla-
nar homography matrix H;, we can obtain"

1 i
g hsy

1 i i i i
(Cjkf +dj)E = —hy hy, = hy By,

i

(a,k; +b) hi,

(5)

where
4; =hil hiz - uOi(hgl hiz +h;1 h;2) + uéi hgl h;z
b, = h;l h;2 - vO[(hgl hiz + h;l h’32) + véi h;l hly
¢ = (hy, - “mh;])z - (h), - ”‘ox‘h;z)z
d = (k3 - vOih;I)z - (hy, - Vol'hgz)z

Stacking (5) with all model planes, we have A 177 =b,
where A and b are both 2J x 1 vectors. Finally we can obtain
polAL B

i m’ i ki M
2.3 Imposing consistency constraint in 3-space geometry
2.3.1 Extrinsic geometries on single respective view

After the greedy estimation procedure for the intrinsic pa-
rameters as described above, let us start to estimate the ex-
trinsic parameters between both cameras in a physical per-
spective. Binocular cameras in a stereo setup are not inde-
pendent, since they view the same scene from different posi-
tions in 3-space geometry. Usually this connection is exploi-
ted to construct a consistency constraint in rigid displace-
ment between binocular cameras. First the extrinsic parame-
ters of model planes in 3-space are calibrated in their own
world coordinate system for both cameras. Once K, is
known, the initial extrinsic parameters R, and ¢, for each
camera reference I,(i = 1, 2) are readily computed'’. We
have r\, =AK; ' h}, r, =K' h, r, =r, xr,, t,=AK "k,

1 3 1
IK Ryl KR
2.3.2 Rigid displacement between two views
Let X and X,;(i =1, 2) be the coordinates of a 3-space

point in 7/ and I,(i =1,2), respectively, we can have

with A =

X, =RX+t, i=12 (6)

Note that R,' = R]. From Eq. (6), the relationship be-
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tween X, and X, can be given by
R=RR), t=t -RRt, (7)

Eq. (7) can be viewed as a rigid transformation from /, to
L.

When J( =2) model planes can be observed by C, and C,
at the same time, the transformation calculated by Eq. (7)
for each model plane from I, to I, might be a little different
due to noise. In this case, each R can be expressed as a 3-
vector r = [r, r, r.]", which represents the rotation axis
and the magnitude is equal to the rotation angle 6§ = ||r||, by
the Rodrigues formula'' as follows:

R=e" =1, +s1n6[r] ) +1 —iose[r] 2 (8)
0 0
0 -r, 1,
where [r]  =| . 0 —r, | is an anti-symmetric ma-
-r. r 0

y x
trix and I, is a 3 x 3 identity matrix. The means of r, § and ¢
can be used to estimate [R ¢] uniquely.

3 Implementation and Experimental Results

First, the proposed algorithm is presented or implemented
in a greedy strategy in detail. Then, the performance of this
algorithm is tested through both simulation and experiments
with real data on the basis of the spatial configuration dis-
played in Fig. 1.

1700 |

Camera 2
Fig.1 Spatial configuration for binocular camera system (unit: mm)

3.1 Implementation issues

The greedy algorithm follows the problem solving meta-
heuristic of making the locally optimum choice at each stage
with the hope of finding the global optimum. Applying the
greedy strategy to the problem of calibrating the binocular
camera system yields the following descriptive method with
six steps in turn:

Step 1 Estimate accurately the homography matrices for
all model planes with different poses w. r. t. both view cam-
eras;

Step 2 Construct characteristic lines from the planar ho-
mography matrices just obtained;

Step 3  Calculate robust principal points for both view
cameras from the achieved characteristic lines via total least-
square fitting, respectively;

Step 4 Compute accurate principal lengths for both view
cameras from reshaping planar homographies, respectively;

Step 5  Generate precisely extrinsic geometries on the
given single view by means of the computed initial parame-

ters and the planar homographies, respectively;

Step 6 Compute accurate rigid displacement between the
two views by combining the extrinsic geometries of one
view camera with that of the other one.

An advantage of this proposed technique is that the intrin-
sic and extrinsic parameters in the binocular camera system
can be obtained greedily at different stages under the given
linear assumption.

3.2 Computer simulation results

Simulation experiments are performed in a stereo system
as shown in Fig. 1. Two cameras C, and C, are symmetrical-
ly placed along a straight line X, which passes through the
origin O ; of the world reference system at 235 mm inter-
vals, and simultaneity are oriented toward the frontage and
focused on to the same fixation point CC, with the coordi-
nate(0,0, 1 700) (mm) in the world reference system. Simu-
lations have been achieved using a chain of stereo images,
with 640 x 480 resolutions, taken from different positions
and orientations for both cameras. The constant intrinsic pa-
rameters can be set to common values: «; =3, =1 194. 26,
uy, =319.5,v,, =239.5, k, =1 and y, =0. Each model plane
is painted with 18 x26 =468 reference points at 14 mm in-
tervals. The center of each model plane is fixed at CC,, and
each pose of the model plane can be represented by different
Eulerian angles(i. e. the pitch angle 6,,, the yaw angle 6,
and the roll angle 6,) from the given plane to the world ref-
erence system. Different poses of planar patterns are selected
symmetrically by the strategy proposed in Ref. [8].

We use six model planes by changing 6,,( —30°, -25°,
-20°, 20°, 25°, 30°), 6,, = —25°, 6,, =0°. The Gaussian
noise with zero-mean and standard deviation ¢ are added to
the projected image points. The estimated camera parameters
are then compared with the ground truth. We measure the
relative error of «, and B;, and the absolute error of u,, and
v,; for the internal geometry of each camera; while we meas-
ure the absolute error of the rotation angles @ and the trans-
lation ¢ between both cameras. The noise level is varied from
0. 1 pixels to 1. 5 pixels for which 500 simulations are done.
The results shown in Fig. 2 are the average compared with
the closed-form solution from Zhang!". As we can see, our
approach is obviously better in performance w. r. t. the noise
level than Zhang’s method with only the closed-form. The
reason for the large amount of fluctuation of the latter meth-
od is that Zhang’s method with only the closed-form'" may
be purely based on minimizing an algebraic distance which
is not physically meaningful for all intrinsic parameters.
However, our method is exploited to obtain each intrinsic
parameter with optimal solutions via minimizing some phys-
ically meaningful distances by stages in a geometric and in-
tuitive perspective with part prior knowledge.

3.3 Results with real data

The proposed algorithm has been tested on real data as
well. The binocular system comprised of two DH-
HV3102UC CCD cameras with lens of 8 mm focal length is
calibrated. Both cameras have resolutions of 2 048 x 1 536,
with a unit cell size of the CCD sensor being 3. 2 pm x 3. 2
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Fig.2 Errors vs. noise level of simulated image points. (a) Principal point; (b) Principal length; (c) Rotation angle; ( d) Translation

pm. Model plane with 8 x6 =48 grid points at 30 mm in-
tervals is roughly placed like Fig. 1, while changing 6.,
about ( —30°, -25°, —-20°, -15°,15°,20°,25°,30°),6,,
= -20°,0,, =0° to obtain eight different poses. The esti-
mated intrinsic and extrinsic parameters with respect to all
combinations of seven images from the available eight ima-
ges are listed in Tab. 1 and Tab. 2, respectively. And some
statistical results shown in Tab. 3 and Tab. 4 are compared
in the same real data with that of the closed-form solution
of Zhang’s method with or without the generic prior con-
straint of the aspect ratio of pixel cells'"”. Since ground
truth is not available, in order to validate our parameters we
use the sample mean g as the ground truth with sample
standard deviation ¢; and we also show the relative differ-
ence w. r. t. the mean of principal length f,(f, =, =8,) and
the absolute difference w. r. t. the mean of the principal
point u,, , v, , the rotation angles @ , and the translation ¢.

As shown in Tab. 1 and Tab. 2, the overall results except for
the last term in Tab. 2 are remarkably reliable. The reason
for the term 7, with a bit large variation may be that there
exist few constraints in the z-direction. As we can see in
Tab. 3 and Tab. 4, our results excluding the first two terms
in Tab.3 are in total comparably steady in the view of the
sample standard variation, and, on the whole, the results
are also very close in the performance of the sample mean
when comparing the closed-form solution of Zhang’s meth-
od with or without the prior knowledge of the aspect rati-
o"". An epipolar line rectification method is performed to
validate our calibration results!""’. From Fig. 3, we can see
that the epipolar lines of the image pair, which are marked
with horizontal lines for the model plane in 3-space with
orientation about 4, = -20°, §,, =30°, 4,. =0°, are a-
ligned in the row after rectification with the estimated mean
system parameters.

Tab.1 Experimental results on intrinsic parameters for real data pixel
Image set fi Uy Voi fa Uy Vo2
(Relative error/% ) (Absolute error)  (Absolute error) (Relative error/% ) (Absolute error)  ( Absolute error)
(1234567) 3743.18 972.01 810. 88 3764.97 1086.57 812. 18
(-0.10) (-4.18) (4.98) (0.05) (-2.19) (5.92)
3747.73 974. 08 807.92 3771.17 1 088. 86 806. 27
(1234568) (0.03) (-2.10) (2.02) (0.21) (0.10) (0.01)
3752.25 976. 57 805. 61 3767.30 1 088. 80 806. 39
(1234578 (0.15) (0.38) (-0.29) (0.11) (0.04) (0.12)
(1234678) 3758.99 983. 38 802. 35 3765. 36 1 089. 56 805. 29
(0.33) (7.19) (-3.55) (0.06) (0. 80) (-0.98)
3745. 64 977.37 807. 27 3752. 41 1094.27 808. 48
(1235678) (-0.03) (1.18) (1.37) (-0.29) (5.51) (2.21)
3742.61 974.91 803. 89 3753.60 1093. 48 809. 39
(1245678) (-0.11) (-1.27) (-2.01) (-0.25) (4.72) (3.12)
(1345678) 3743. 68 975. 46 804. 48 3760. 16 1087.67 805. 22
( -0.08) (-0.73) (-1.42) (-0.08) (-1.09) (-1.05)
3 740. 05 975.70 804. 77 3770.24 1 080. 95 796. 90
(2345678) (-0.18) (-0.49) (-1.13) (0.19) (-7.81) (-9.37)
“ 3746.76 976. 19 805. 90 3763. 15 1088.76 806. 27
T 6.17 3.32 2.70 7.13 4.14 4.46
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Tab.2 Experimental results on extrinsic parameters for real data

Rotation angle/( °) Translation/mm
Image set
0, 0, 0. t, t, t,
0. 652 -17.951 0. 340 453. 67 -10. 14 42.48
(1234567) (-0.007) (0. 024) (-0.025) (0.47) (0.32) (-2.92)
0. 689 -17.955 0.363 454.72 -10. 42 42.18
1234
(1234568 (0. 030) (0. 020) ( -0.002) (1.52) (0.04) (-3.22)
0. 642 -17.974 0.354 453. 60 -10.70 45.81
(1234578) (-0.017) (0.001) (-0.011) (0. 40) (-0.24) (0.41)
0.562 -18.022 0. 347 452.01 -12.04 49.78
1234
(1234678 ( =0.098) ( =0.047) (-0.018) (-1.19) (-1.58) (4.38)
0. 622 -17.937 0.362 452.53 -11.16 49.77
(1235678) ( -0.037) (0.038) ( -0.003) (-0.66) (-0.70) (4.37)
0. 600 -17.930 0. 360 453.21 -9.84 48. 09
(1245678 ( -0.059) (0.045) ( -0.005) (0.01) (0.62) (2.69)
0. 682 -17.980 0.378 452.72 -9.69 45.54
(1345678) (0.023) ( -0.005) (0.013) (-0.47) (0.77) (0.14)
0.819 -18.049 0.415 453.11 -9.70 39.51
(2345678) (0. 160) (-0.074) (0. 050) (-0.09) (0.76) (-5.89)
" 0. 659 -17.975 0. 365 453.20 -10. 46 45. 40
o 0. 077 0. 042 0.023 0.83 0.82 3.77

Note: Each term in brackets denotes the absolute error related to the current parameter.

Tab.3 Comparing intrinsic parameters of our results with that of the closed-form solutions'"

with or without assumed aspect ratios for the same real data pixel
Parameters 31 B Ugy Vo %) B Uy Vo2
Our i 3746.76 3 746.76 976. 19 805. 90 3763.15 3763.15 1088.76 806. 27
results T 6.17 6.17 3.32 2.70 7.13 7.13 4.14 4.46
Zhang’s'! w 3758.00 3755.90 991. 74 787.59 3748. 50 3746.70 1108.75 821.53
(k;#1) o 5.55 3.44 1. 66 4.13 17.05 11.58 7.13 15. 89
Zhang’s!" . 3757.00 3757.00 991. 74 787.59 3747. 60 3747. 60 1108.75 821.53
(k; =1) o 4.49 4.49 1. 66 4.13 14.31 14.31 7.13 15. 89
Tab.4 Comparing extrinsic parameters of our results with that of the closed-form solutions'"
with or without assumed aspect ratios for the same real data
Rotation angle/( °) Translation/ mm
Parameters
0, 0, 0, t, t, t,
w 0. 659 -17.975 0. 365 453.20 —-10. 46 45.40
Our results
o 0.077 0. 042 0.023 0.83 0.82 3.77
Zhang’s''! 0.471 -17.956 0.332 451. 86 -0.718 60. 90
(k;#1) o 0. 140 0. 047 0. 065 1.24 3.41 6.98
Zhang’s''l'  u 0. 470 -17.953 0.330 451.73 -0.733 60. 86
(k; =1) o 0.155 0.043 0. 064 1.27 3.08 6.98

(b) (¢) (d)
Fig.3 The epipolar line rectification results for the image pair in the binocular cameras. (a) Left image; (b) Right image;
(c) Rectified left image; (d) Rectified right image

binocular camera system in close range. The calibration pro-
cedure relies on an excellent characteristic of the planar ho-

A new plane-based camera calibration method, simple mography matrix and on the assumed constraint with gener-
and intuitive, is presented in a greedy framework for the ic prior knowledge about the unit cell size of the CCD sen-

4 Conclusion
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sor, as well as the inherent consistency constraints in 3-
space geometry. And several predefined parameters, which
represent the intrinsic and extrinsic geometries in such a
stereo system, are estimated optimally step by step in a line-
ar optimization framework via minimizing the geometrical
or physical cost functions. Both computer simulation and re-
al data are exploited to test this approach, and reasonably
satisfactory results are obtained. Therefore, the given algo-
rithm is sufficient for applications where high accuracy is
not required and can be easily performed by common com-
puter users who are not experts in computer vision, when
compared with the traditional algorithm. In our future
work, we plan to observe the technique with lens distortion
or global optimization for obtaining more reliable results.
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