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Abstract: The robust admissibility analysis of a class of uncertain
discrete-time switched linear singular( SLS) systems for arbitrary
switching laws is addressed. The parameter uncertainty is assumed
to be norm-bounded. First, by using the switched Lyapunov
function approach, some new sufficient conditions ensuring the
nominal discrete-time SLS system to be regular, casual and
asymptotically stable for arbitrary switching laws are derived in
terms of linear matrix inequalities. Then, the robust admissibility
condition for the uncertain discrete-time SLS systems is
presented. The obtained results can be viewed as an extension of
previous works on the switched Lyapunov function approach from
the regular switched linear systems to the switched linear singular
cases. Numerical examples show the reduced conservatism and
effectiveness of the proposed conditions.
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ecently, switched systems have received increasing at-
Rtention in the control field. Switched systems are a class
of hybrid systems consisting of a family of continuous- (or
discrete-) time subsystems and a switching rule that specifies
the switching among them''™ . A survey of basic problems
in stability and design of switched systems has been pro-
posed recently in Ref. [3]. As pointed out in Ref. [3], one
of the interesting problems in switched systems is to find
non( or less) -conservative conditions to guarantee the stabili-
ty of the systems for arbitrary switching laws. A powerful
tool regarding this issue is the multiple Lyapunov functions
(MLF) approach'™ . The switched Lyapunov function
(SLF), which attracts the poly-quadratic stability idea for a
polytopic time varying uncertain system to solve a class of
discrete-time switched control problems, essentially belongs
to the MLF approach, and can be considered as a tradeoff
between those conservative methodologies (using a single
common Lyapunov function) and the ones less conservative
but numerically harder to be checked"'.

Within the general class of switched systems, switched
linear singular( SLS) systems form an important subclass—
they are suitable models for many natural and man-made
phenomena, for example, dynamic economic systems, elec-
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trical networks and robotics'®*. Therefore, it is important

and, in fact, necessary to study SLS systems. Since the regu-
larity, impulse elimination, state consistence and stability
should be considered simultaneously™, the analysis and syn-
thesis of SLS systems are more complicated than those of
regular systems. Recently, some basic research results on
SLS systems have been given in Refs. [10 —17]. However,
all the above-mentioned works are based on a common Lya-
punov function ( or common Lyapunov-like inequalities )
method, which tends to give more conservative conditions.

In this paper, we investigate the robust admissibility
analysis of the discrete-time SLS systems for arbitrary switc-
hing laws and norm-bounded uncertainties. By using the
switched Lyapunov function approach, some new sufficient
conditions ensuring the discrete SLS system to be admissible
for arbitrary switching laws are derived in terms of LMIs.
The results extend the previous works on the switched Lya-
punov function approach from regular switched linear sys-
tems to switched singular cases. Two examples are given to
show the reduced conservatism and effectiveness of the pro-
posed conditions.

Throughout this paper, C denotes the set of all complex
numbers. R is the set of real numbers, and R"*" is the set of
n x n dimensional real matrices. M >0(M <0) means that M
is positive definite( negative definite). M =0(M <0) means
that M is positive semi-definite (negative semi-definite) .

1 Problem Formulation and Preliminaries

Consider the following uncertain discrete-time SLS sys-
tem

E x(k+1) =(A, +AA )x(k) (1)

where X¥( k) € R" is the state. The right continuous function
o:{0,1,...}—>/={1,2, ..., 1} is the switching law. Moreo-
ver, o = i implies that the i-th subsystem is activated. E, e
R"" and 0 <rank E,<n.A,(ie/ ) are constant matrices of
approximate dimensions. AA,(i e /) are the norm-bounded
parameter uncertain matrices of the form

M, =G I(p)F, Vies (2)

where G,, F,(i e /) are the known real constant matrices
with appropriate dimensions and I'.(p) (i € /) are the uncer-
tainty matrices satisfies

I;(p)I(p)<I VpelX (3)

where 3 is a compact set in R.
As in Refs. [15, 17], the following assumption is made:
Assumption 1 There exist / invertible matrices M,, M,,
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, M, and an invertible matrix N such that M.E,N =
diag{I,,0}: =E, Vie/

Under assumption 1 with the transformation x = N '% =
[x; x;]", system (1) is restricted system equivalent(r. s.

e.) to

Ex(k+1) =(A, +AA )x(k) (4)
where E is defined in assumption 1, A, = MAN: =
Aill i12 . rxr (n=r)y x(n-r)

[Am Am] with A,, e R”" and A,, e R . and

AA,=G.I'(p)F, with G,=M,G,and F,=F N, Yie/
Definition 1'">"'  Consider the SLS system

E x(k+1) =A x(k) (5)

System(5) is said to be regular if there exists a constant
scalar s; e C such that det(s,E, - A,;) #0, Vie / ; system
(5) is said to be causal if it is regular and for all s, € C,
deg(det(s,E, -A,)) =rank E,, Vie/ ; system (5) is said
to be asymptotically stable if }iTx(k) =0; system (5) is

said to be admissible if it is regular, casual and asymptotical-
ly stable for arbitrary switching laws.

The robust admissibility analysis problem to be addressed
in this paper is to develop conditions guaranteeing that the
uncertain discrete SLS system (1) is admissible for arbitrary
switching laws and parameter uncertainties in formulae (2)
and (3). To this end, the following lemmas are needed.

Lemma 1" The system Ex(k +1) = Ax(k) is admis-
sible if and only if there exists a symmetric matrix P such
that E'PE=0 and A"PA - E'PE <0.

Lemma 2”' The switched system described as

x(k+1) =A x(k)

where ¢ is a switching rule which takes its values in the fi-
nite set /= {1,2, ..., [}, and is asymptotically stable for arbi-
trary switching laws if there exist / positive-definite matrices
P.,P,, ... P, such that

P, -A/PA >0 Y (i,j) erx/

2 Main Results

In this section, we present some LMI-based sufficient con-
ditions under which the switched singular system(1) is ro-
bustly admissible for arbitrary switching laws. First, by using
matrix inequalities, we present the following theorem.

Theorem 1 Under assumption 1, the SLS system (1)
with I',(p) =0(i e /) is admissible for arbitrary switching
P/(P e
R"*",ie /) such that the following two sets of inequalities
hold

laws if there exist / symmetric matrices P,, P,, ...,
EPE =0 Vie/ (6)
Z[PJ.ZLT -EPE; <0 V(i,j)e/x/ (7

Proof Under assumption 1, by remark 2, system(1) with
I'(p) =0isr.s.e. to

x, (k+1) =A_,,x,(k) +A_,x,(k) }

(8)
A x (k) +A,_,x,(k) =0

Therefore, we only need to prove that (8) is admissible
for arbitrary switching laws. If(6) and (7) hold, then from
Ref. [17], we know that subsystems (E,, A,), Vie 4 are
regular and causal. So by Ref. [9],A,,, Vie 4is nonsingu-
lar. Furthermore, by definition 1, system (1) with I',(p) =0
is regular and causal.

We now prove the asymptotic stability of system (1) with
Pill

PT

i12

-1 -T Pi12
I'(p) =0. Let N" PN = . Then by (6), we

P122

can obtain P, = 0. Substituting M,EN, N"' PN "
M.A N into (7) gives

[ AAZ][lel lez][AL A;]] _
A 22 Pﬁz P A:Z Aéz
I 0 ill 112 .. /. J
. 0[ ][ [<0 Viijpens O

Pre- and post-multiplying the left-hand-side matrix of (9)

I -A,AL
by [0 ’IIZ 2 ] and its transpose, we obtain
[(Aill Allexzz Ale)Pj]l(Aill _Ailea_z] Am)T -pP, = ] <0
* *k
Y (i,j) e/x/ (10)

where * represents a matrix not used in the following dis-
cussion. Inequality(10) implies

(A, -A,A, A,)P

i12°7i22

P, <0

II(A A117At22 At?l)T

Y(i,j)) erx/ (1D

Using inequality (11) and noticing P,, =0, we obtain

P,>0 Vies (12)

Furthermore, by (8) and the non-singularity of A ,,, we
have

x(k+1) =(A,, -A,AL Ax (k) VYie/

(13)

Then by lemma 2, the sub-state x, (k) is asymptotically
convergent to zero, and so is x, (k) by x, (k) =
-A, A, x, (k). Therefore, system (8) is asymptotically
stable for arbitrary switching laws, and so is the system (1)
with I',(p) =0.

Remark 1 When E, =Iand I';(p) =0, system (1) re-
duces to a regular switched system and theorem 1 coincides
with the stability conditions in theorem 25! Therefore, theo-
rem 1 can be regarded as a generalization of the reported re-
sults for regular switched systems to singular switched sys-
tems.

Remark 2 The condition in theorem 1 is less conserva-
tive than that in theorem 1'"' since the common Lyapunov-
like inequalities are replaced by a set of switched Lyapunov-
like inequalities, which is similar to the regular switched lin-
ear systems case.

By introducing the matrix @ e R

nx(n-ry

satisfying rank @
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=n-rand E.@=0(ie/ ), we can obtain the following
corollary which transforms the matrix inequality conditions
to strict LMIs conditions.

Corollary 1 Under assumption 1, if there exist positive-
definite matrices X, e R"*"(i e /) and symmetric matrices
Y, eR" 7" "(ie/ ), such that the following one set of
inequalities

Y (ij) erx/
(14)

A(X, +®Y D )A] -EXE; <0

or the following one set of strict-LMIs

Z'(DY/(DTA? _EiXiEiT A:Xj ..
XA! _X, <0 Y(ij)esrx/
(15)

hold, then the SLS system (1) with I':(p) =0(ie/ ) is ad-
missible for arbitrary switching laws.

Proof (sufficiency) Suppose that there exist [ positive-
definite matrices X, X,, ..., X, [ matrices Y, Y,, ..., Y, and
matrix @ such that (14) holds. By setting P, = X, + @Y. @"
(ie/ ), we can easily obtain (6) and (7) with the help of
(14).

(Necessities) Suppose that / symmetric matrices P, P,,
..., P, are the solutions of (6) and (7). Choose symmetric
matrices X,,(i e /) such that

>0 Vies

[Pill PilZ (16)

P:'I;Z XQZ

i

This is feasible because from the proof procedure of theo-
rem 1 we can have P,, >0 and by the Schur complement

formula it suffices to choose X,, > P, P, P,,. Let X, =

Pill Pil2
N[ P?;Z Xi22
(16) and the nonsingularity of N, we have X, >0. Let @ =
N[O I, 1" and by (16), we obtain P, =X, + @Y. P" (i
/). Therefore, (14) follows from (7). Moreover, by using
the Schur complement formula, (15) is equivalent to (14).

Denote

]NT and Y, = P,, - X,, (i e /). Then, by

P(X,Y) =X, + DY, D" Vie/ (17)

By a similar proof procedure to those of theorem 1 and
corollary 1, we obtain the following lemma.

Lemma 3 Under assumption 1, if there exist positive-
definite matrices X, e R"*"(i e /), symmetric matrices Y,
eR" 7" (ie /), such that

(A, +A)P(X,,Y)(A +AA)" -EXE; <0

Y (i,j) e/x/ (18)

then the uncertain SLS system (1) is robustly admissible for
arbitrary switching laws.

We now present strict LMIs conditions under which the
uncertain SLS system (1) is robustly admissible.

Theorem 2 Under assumption 1, if and only if there ex-
ist positive-definite matrices X, e R"*"(i e /), symmetric
matrices ¥, e R" ™" *"""(ie /), positive scalars ey, (ie

4je/ ), such that the following strict LMIs hold
AP(X,Y)A] -EXE +y,GG APX,Y)F;
(AiP(X,wY/‘)F,T)T _('YijI_Qij)
YV (i,j) erxs/

<0
(19)

where Q, = ¢,1 + F.P(X,, Y,) F], then the uncertain SLS
system ( 1) is robustly admissible for arbitrary switching
laws.

Proof  From (19), it follows that y,I - @, >0. By
(2),(3) and the definition of @, we obtain

(A, +A)P(X,,Y)(A +AM)" -EXE/ =
AP(X,Y)A] +AMAP(X,Y)A] +
AP(X,Y)AA] +AMAP(X,,Y)A] -EXE <
APX,Y)A +G I (p)FP(X, Y)A +
ZiP(X/” Yj)(ain(p)Fi)T + G,E(P) Q,y(CfE(P))T -
EXE] = -(GI(p) -APX,Y)F (y,I-0)")"
(v, - Q) (G.I(p) ~AP(X, Y)F (y,I-Q;) )"+
AiP(Xj’ Y;‘);‘iT _EiXiE;r +7ifaipi(P)FiT(P) G;r +
%i?(xj, Yj)ff(yzl - Q,y) "FLP(XI., Yj)A,T%
AP(X,, Y,‘)AiT _EiXiE;r +7i,‘GiFi(P)FiT(P) G;r +
APX, Y)Fi(y,]-0Q,) '"FPX,Y)A] =
AP(X,Y)A! -EXE +v,GG, +
APX,Y)F (y,I-Q,) 'FP(X,Y)A]

By (19) and the Schur complement formula, (18) holds.
Then, by lemma 3, we can conclude that the SLS system(1)
is robustly admissible for arbitrary switching laws.

3 Numerical Examples

Example 1 Consider system (1) with o € /= {1,2} and

1 0 O
E1=E2=[0 | 0]
0 0 0
0.9 0 1
Alz[ 0 0.5 —0.1]
1 -1 1
-0.4 0 -0.5
212=[ 0.1 -05 -1 ]
-0.3 -0.1 0.5

Weset®d=[0 0 1] . Using the Matlab LMI control
toolbox, the LMIs in corollary 2 in Ref. [ 15] are not feasible
for this example. Therefore, we cannot conclude whether this
system is admissible for arbitrary switching laws or not by
corollary 2 in Ref. [ 15]. However, we can conclude that this
system is admissible for arbitrary switching laws by solving
the LMIs in(17), where a set of feasible solutions is ob-
tained as follows:

82.0859 19.3564 30.9463
X = [ 19.3564 52.3091 39.443 2]
30.9463 39.4432 71.7134
50.2535 34.3759 23.668 1
X, = [34. 3759 79.8489 48.188 5]
23.668 1 48.1885 69.3152
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G, =[0.1 0.2 0.1]7,
F,=[0.2 0.1 0.2],

Y, = -197.0242, Y,=-133.8238 G,=[0.2 0 0.13]"

This means, for this example, corollary 1 in this paper is F,=[0 0.12 0.12]

less conservative than corollary 2 in Ref. [15].
We set the initial value as [1 2 1]7 and let subsystem
1 be activated when k<5 and subsystem 2 be activated when

Setting @=[0 0 1]" and solving the feasibility prob-
lem of LMIs (19) gives the following solution:

Step

(e)
Fig.1 State x, x, and x;( when switching between two sys-
tems). (a) x;; (b) x,; (c) x5

Example 2 Consider system (1) with o e /= {1,2} and

k>5. Fig.1 shows that all the state trajectories converge to 361.721 8 10.512 1 —463.776 4
the origin quickly. X = [ 10.512'1 51.1258  -22.0846 ]
5 or -463.776 4 -22.0846  780.2397
337.3973 -14.0327 -413.8702
L X2=[ -14.0327 58.1922 -22.0797 ]
Lo -413.8702 -22.0797 719.2177
o Y = -325.4296, Y,=-278.2854
0.5
£,=94.0426, vy, =254.6283
O [—
£,=22.8041, vy,,=93.2373
-0.5 I L | |
0 10 20 30 40 £, =29.6115, 1y, =167.3273
Step
- (a) £, =13.9098, 1y, =93.3242
15 The LMIs in theorem 2 in Ref. [ 15] are not feasible for
this example. It is clear that, for this example, theorem 2 in
10k this paper is less conservative than theorem 2 in Ref. [15].
) osk 4 Conclusion
. In this paper, the robust admissibility of uncertain dis-
or crete-time SLS systems for arbitrary switching laws and
norm-bounded uncertainties is investigated. The main contri-
-0.5; 10 20 30 s bution of this paper is that the switched Lyapunov function
Step approach is extended from regular switched systems to sin-
1.0 (b) gular switched cases. Examples have been provided to show
-[ the reduced conservation and effectiveness of the proposed
conditions. Possible research topic in the future study is to
0.5 extend the results to the cases of uncertain SLS systems
whose matrices E, do not share a common rank.
& oH
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