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Improved delay-dependent stability criteria for stochastic systems
with time-varying interval delay
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Abstract: The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded
uncertainty is investigated. Utilizing the information of both the lower and the upper bounds of the interval time-varying delay, a novel
Lyapunov-Krasovskii functional is constructed. The delay-dependent sufficient criteria are derived in terms of linear matrix inequalities
(LMIs), which can be easily checked by the LMI in the Matlab toolbox. Based on the Jensen integral inequality, neither model
transformations nor bounding techniques for cross terms is employed, so the derived criteria are less conservative than the existing
results. Meanwhile, the computational complexity of the obtained stability conditions is reduced because no redundant matrix is
introduced. A numerical example is given to show the effectiveness and the benefits of the proposed method.
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T ime delays are often the main sources of instability and poor performance of a control system' ™'. So, the robust stability
analysis of dynamic systems with delays has attracted considerable attention over the past decade. In general, stability re-
sults can be classified into two types: delay-dependent stability criteria and delay-independent stability criteria. It is well
known that delay-dependent stability conditions are generally less conservative than delay-independent conditions, especially
when the size of the delay is small. Therefore, more and more attention has been focused on the derivation of delay-depend-
ent stability criteria and many effective approaches have been provided to reduce the conservatism" " . Furthermore, interval
time-varying delay is a special type of time delay in practical engineering systems, and has been investigated in Refs. [11 —
15], in which the lower bound is not restricted to be 0.

On the other hand, stochastic systems with time delays have come to play an important role in many branches of science
and industry. Many efforts have been devoted to extending the results of deterministic systems to stochastic systems''*""". The
problems of robust stability, stabilization, H_ control and filtering for stochastic time-delay systems have received increasing
attention'"*™* .

In this paper, the robust stability of the uncertain stochastic system with time-varying interval delays is investigated. By
virtue of the information of both the lower and the upper bounds, a new Lyapunov-Krasovskii functional is proposed to drive
some new delay-dependent stability criteria. Based on the Jensen integral inequality, the new delay-dependent criteria are es-
tablished in terms of the LMI. Model transformations and bounding techniques for cross terms are not employed. The advan-
tage of the approach is illustrated by a numerical example.

1 Problem Formulation and Preliminaries

Consider the following stochastic delayed system
dx(r) =[A(D)x(1) +A, (Dx(t—-7(1))]dr +g(1,x(1), x(1 - 7(1))) do(1) x(1) =¢p(1);tel -7,,0] (1)

where x( 1) =[x,(#),x,(8), ..., x,(1)] T e R" are the static variables, and 7(7) is a time-varying interval delay and satisfies 0
<7, <7(0) <7,,7(H) SU<0.Ph(1) € LZF"([ -7,,0]; R") is the initial condition. w(#) is an m-dimensional Brownian mo-
tion defined on (&2, F, {F,},_,, P) with a natural filtration {F,},_, generated by {w(s);0<s<t}, and it satisfies

E{dw(1)} =0, E{do’(f)}=dt (2)

The matrices A(t) =A + AA(t), B(t) =B + AB(t), where A, B e R"*" are the constant matrices. AA(?) and AB(t) are
time-varying parameter uncertainties. The uncertainties are said to be admissible if the following assumptions are satisfied.
Assumption 1

[AA(H)  AA (D] =MF(1)[E, E,] (3)

where M, E,, and E, are the given matrices. The uncertain matrix F(¢) satisfies
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F'(HF(n <I VteR 4)

Assumption 2 g(7) =g(t,x(1),x(t-7(7))) e R"" is locally Lipschitz continuous and satisfies the linear growth condi-
tion

g (Ng(n] < |G, x(0) | + [|Gx(1 - 7(0)) | (5)

where G, and G, are constant matrices.
Definition 1 For system (1), the trivial solution is said to be mean-square asymptotically stable if

HmE |[x(r) [ = (6)

The purpose of this paper is to derive the delay-dependent criteria for the mean-square asymptotical stability of system
(1).To obtain our main results, we need the following lemmas:
Lemma 1 (Schur complement) Given constant matrices £2,, £2,, £2,, where 2, = 2/ and £, >0, then 2, + 2, 2, "' O,
QI - gz !23 0
- -Qz QsT 91 ] )
Lemma 2 Let @ be a given symmetric matrix, and M and G be matrices with appropriate dimensions. Then, for any
F(1) satisfying F"(f) F(t) <I, we have the following inequality

0
<0, if and only if [ ! <0, or
£,

®+MF(HG+G'F'(HhM' <0 (7)

holds if and only if there exists a scalar £ >0, such that
D+ 'MM" + GG <0 (8)
Lemma 3 (Jensen inequality) For any constant matrix M e R"*", M = M" >0, scalars r, and r, satisfying r, <r,, and a

vector function e: [r,, r,] —R" such that the integrations concerned are well defined, then

([ wtoras) M( [ ats)ds)< (=) | () Mas)ds )

2 Main Results

In this section, a new Lyapunov-Krasovskii functional is constructed and the following improved stability criterion is ob-
tained.
Theorem 1 For given scalars 0 <7, <7, <0 and u, the uncertain stochastic system (1) is robustly asymptotically stable

in mean square if there exist scalar & > 0, positive matrices P >0, 0 >0, R, >0, R, >0, R, >0, [ " le] >0,
i Q"l sz
VA
[ ! 12] >0, n x n matrix S, such that the following LMI holds:
ZZI Z22
(A, PA, A, 0 A'S A, 0 PM  ¢E;
A, 0 R, A'S 0 R, 0 <E)
Az% _le 0 0 0 0 0
Ay 0 0 0 0 0
A= A; O 0 S™M o [<0 (10)
Ay -Z, 0 0
Ay 0 0
-el 0
L -l |
where
An =PA +ATP+Q+Q11 _Rl _R3 +Z11 +G1T PGI’ A13 =Q12 +R1’ Am :R3 +le
Azz = _2Rz -(1 _,U«)Q"'G;r Psz A33 :sz _Qll _Rl’ A44 = _sz _Rz
2 2
A,=-5-§" +T4—MRI +&°R, +%R3, Ay=-R +Z,-Z,, A,=-R, -Z,, 5=1, -1, (11)

Proof Define a new vector y(t) € R", such that

y(ndr=dx(r), y(1) = (1) tel -7,,0] (12)
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From (12), we have
| y(ods =x(n) —x(1 =7(n) (13)
t=7(t)
Choose a Lyapunov-Krasovskii functional as
Vix(t),n) =V (x(0),n) +V,(x(0),1) +Vi(x(1), 1) +V,(x(1),1) (14)
where
V.(x(),1 =x"(1)Px(1) +f xT(s)Qx(s)ds
V,(x(1),1) = 2[ j »'(O)R,y(6)dods +5j j y'(0)R.y(6) dods +—J j ¥ (0)R.y(6)dods
X(S) ' x(s)
Ql] QIZ ]
V. (x(t),t) = 7, |ds
f [ )] [QZI sz] x(s_jM)
, x(s) ' z x(s)
— 12
o0 =] Lo 2 2l
. Qll QIZ le ZlZ
with P>0,0>0,R,>0(i=1,2,3), >0, >0.
Q ( ) [QZI QZZ] [ZZI ZZ"]
It can be derived by the Itos differential formula that
dV(x(1), 1) =LV(x(?), t)dr +2x" (1) Pg(t) dw(1) (15)
The infinitesimal generator LV(x(?), t) is given by
LV(x(t),t) =LV, (x(1),t) +LV,(x(1),1) +LV,(x(2), 1) +LV,(x(2),1) (16)

and

LV, (x(1), 1) =2x () PLA()x(1) + A, (Dx(1=7(1)] +g (1) Pg(n) +x" (1) Qx(1) = (1 =7(0))x" (1 =7(1)) Qx(t - 7(1)) <

2x" (D PIA(Dx(1) + A, (Dx(t=7(0))] +g (D Pg(1) +x" (D Qx(D) - (1 ~w)x" (1 =7(1)) Qx(1 - 7(1)

LV,(x(1), 1) =y"(1) —R R, + TR (0 = [ Y () Ry(s)ds =5 ¥ (IRy()ds -
4 2 =% =3

[ YRy ds

According to lemma 2, we have

)

‘ x() ' x(1)
_Tzﬂjt%yT(s)Rly(s)dss x(t_TZM)] [ lel _Rllel] x(t_TZM)]
_5f ”’y (5)R,y(s)ds _—5f Y "(5)R,y(s)ds —af y "(9Ry(s)ds < [ ’z(tt__TIj)))]T
SN i) i ) Lol GO
and
x(1)

x(t) ]

)]T[ R, -R ][

T, [
_TJ in(S)Ray(S)ds <

-

It is also easy to obtain

X(t—TZ—M) ' 0, 0,

LV, (x(t),t) = 0. 0

x(1)
()"

x(t —1,)

M

x([ T—
2

x(t —1,)

)

|

(17)

(18)

(19)

(20)

(2D

(22)
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LV, (x(0.0) = (mz)] 7 7] x(x(_t)f;) ‘[iE::Z))] 7 7 )i;z))] >

On the other hand,

T T G—]r 0 Gl 0 T T T T
tr{g () Pg(1)} < tr{fl(t)[ 0 GT]P[ G ]§l(t)} < x (DG, PGx(1) +x (t —7(1))G,PG,x(t —7(1))

0
(24)
where £, (1) =(x"()x"(t-7(1)))".
From Eq. (12), for any matrix S € R"*", we have
2y (DS {[A(Dx(1) +A (Dx(t —7(1)) —y(H)]dt +g(Hdw(t)} =0 (25)
According to Egs. (16) to (25), we have
dV(x(9), 1) = LV(x(1),H)dt +2[Px(t) +Sy(H)]1 g(t)dw(?) (26)
where
LV(x(1),1) = LV(x(1),1) +2y"()ST[A(D)x(1) +A,(Dx(t —7(1)) —y(D)]dt < (1) A&(D) (27)
with
T _ T T Tym\,.T _ T T Tl T _
£ = [60x" (¢ -2y ox (2= |
rA, PA(D A, 0 AD'S A, 07
A, 0 R, A()'S 0 R,
A33 _le 0 0 0
A = A, 0 0 0 (28)
A 0 0
Ay 0
L A77_
and A,, = PA(1) +A" ()P +Q +Q,, -R, -R, +Z,, +G/PG,, A,, =-2R, — (1 -n)Q +G,PG, .
Then, A can be rewritten as
- PM [E]T
0 E2T
, 0 0
A=A, +| 0 |[F(D[E, E, 0 0 0 0 01+| ¢ [F(OIM'™P 0 0 0 M'S 0 0l (29)
S'™™M 0
0 0
-0 - L ¢ A
where
rA, A, 0, +R, 0 A'S R, +Z, 07
Ay, 0 R, AS 0 R,
A33 _le 0 0 0
Ay = Ay 0 0 0 (30)
A 0 0
Ay 0
L A77_

From lemma 1 and lemma 2, A <0 is equivalent to A < 0, which implies that system (1) is robustly asymptotically sta-

ble in the mean-square sense. This completes the proof.
Remark 1 In theorem 1, the Lyapunov functional (14) is more general, and the obtained stability is less conservative

than the existing ones. Meanwhile, only one slack matrix S is involved, and the computational complexity is reduced. So, our
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stability criteria are more efficient and less conservative.

Remark 2 When y is unknown, by setting @ =0 in (14), we can obtain a delay-dependent and rate-independent mean-
square asymptotically stable criterion of system (1) from theorem 1.

Remark 3 When handling the term tr{ gT( t) Pg(t) }, some previous works, such as Ref. [20], assume that P < AI, where
A is the maximum eigenvalue of P. This conservative restriction is removed in our method.

Next, we consider system (1) with the routine delay case described by 0 <7(t) <7,,.

Corollary 1 For given scalars 0<7,, <0 and u, the uncertain stochastic system(1) is robustly asymptotically stable in

mean square if there exist scalar & >0, positive matrices P >0, 0 >0, R, >0, R, >0, [

that the following LMI holds:

QIZ
Q22

Qll
QZ]

] >0, n x n matrix S, such

=, E, 0, +R 0 A'S PM SEIT_
= 0 R, ATS 0 gEZT
_ ‘—‘:'33 _le 0 0 0
~ = _sz _Rz 0 0 0 <0 (31)
= S'™™ 0
—el 0
- —el-
where 5, = PA +ATP+Q+Q11 -R, -R, +GITPG1,E,12 =PA, +R,,. 5, = -2R, - (1 —,LL)Q+G2T PG, 5,=0, -0, -
2
R,5E.=-S-§" +T4—MR1 +&°R,.

Proof Choose the Lyapunov-Krasovskii functional as

t

Vix(1), 1) =x"(1)Px(1) +f x"(5) Qx(s)ds +72—“fJ y"(6)R,y(6)d6ds +7Mf f Yy ()R, y(6)d6ds +

. x(s) R 0. 0., x(s) )
fr—¢[x(s—24)] 0, sz] TM)]

(32)
X —
(S 2
The proof of corollary 1 is similar to that of theorem 1, and it is omitted here.

3 Numerical Example

In this section, we provide a numerical example to show the effectiveness of our results.
Example 1 Consider the delayed uncertain stochastic system (1) with

A=[_2 O]’A1=[_1 O]’le . '
1 -1 -0.5 -1 Tab.1 Comparison of maximal allowable
E =E, =011, G, =G, = /(ﬁl (33) delays by different methods (u =0)
Methods Tm
First, we consider the constant time delay case. Tab. 1 lists the maximal Ref. [20] 1181 2
allowable delays given by corollary 1 and the existing methods. It is obvi- Ref. [19] 1.364 0
ous that corollary 1 is much less conservative than the methods in the liter- Ref. [21] 1.527 0
ature. Then, for the time-vary'%ng interva.l delay, the maximal allowable de- Ref. [23] 156
lays given by our results are illustrated in Tab. 2. . Ref. [24] 2 898 7
From Tab. 1 and Tab. 2, we can see that our results are less conservative C
X . orollary 1 2.9330
and more general than those in the literature.
Tab.2 The maximal allowable delays by different 7, and u
T ©
" 0 0.1 0.5 0.9 Unknown
0 2.9330 2.4867 1.508 3 1.0408 1.0103
0.1 2.9344 2.4880 1.5107 1.058 5 1.037 8
0.3 2.9399 2.494 1 1.5210 1.1187 1.1182

4 Conclusion

This paper presents improved results to test the robust stability of stochastic delayed systems with admissible uncertainty
and time-varying delays in a range. The results are obtained by constructing a new class of Lyapunov-Krasovskii functional.
Neither model transformation nor cross-term bounding techniques are used in this paper. Therefore, the presented criteria are
less conservative than the existing ones, and have been demonstrated by a numerical example.
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