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Determination of pollution point source in parabolic system model

Wang Zewen
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Abstract: This paper considers an inverse problem for a partial differential equation to identify a pollution point source in a watershed.
The mathematical model of the problem is a weakly coupled system of two linear parabolic equations for the concentrations u( x, r) and
v(x, t) with an unknown point source F(x, 1) = A(#)8(x —s) related to the concentration u(x, t), where s is the point source location
and A(?) is the amplitude of the pollution point source. Assuming that source F becomes inactive after time 7", it is proved that it can
be uniquely determined by the indirect measurements {v(0, 1), v(a, t), v(b, 1), v(1,1),0 <t<T,T" < T}, and, thus, the local Lipschitz
stability for this inverse source problem is obtained. Based on the proof of its uniqueness, an inversion scheme is presented to determine
the point source. Finally, two numerical examples are given to show the feasibility of the inversion scheme.
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he environmental problem is one of the urgent issues for sustaining human life, where water pollution is one of the most
T important problems. In this paper, we consider the problem of identifying the pollution point source from the measure-
ment data at some points in a watershed. The main application( but not only the one) of our study is the identification of the
source pollution F of biological oxygen demand (BOD) in a river, from the concentration measures of dissolved oxygen
(DO) at appropriate points. Here, the concentrations of BOD and DO are, respectively, denoted by u# and v. In fact, the BOD
measurements need 5 d in order to be available whereas the DO measurements are immediately available in general. Such a
model is related to the determination of pollution sources causing water contamination in some finite region. The problem
that we consider here is reduced to a linear parabolic system, and the concentrations u( x, 7), v(x, t) satisfy the following ini-
tial-boundary problem with a zero-Neumann boundary condition,

Llul(x,t) = F(x,t), L[v](x,1) = Ru(x,1t) xe (0,);0 <t<T
ou(0, 1) _ ou(l, t) -0, av(0, 1) _ av(l, 1) -0 t e (0.7) (1
0x 0x ox 0x
u(x,0) =¢(x), v(x,0) =¢(x) x e (0,0)
2
where L = % -D 8372 + V% + R, D >0 is a diffusion coefficient, V >0 is the velocity of the watershed, R >0 is the coeffi-
X

cient of the self-purifying function, ¢(x) and ¢s(x) are the initial pollutions of the watershed, F(x,?) =A(#)8(x —s) is the
pollution point source, s is the source location, and A(?) e L’[0, 1] is the intensity of the pollution source.

Inverse source identification problems are important in many branches of the engineering sciences. Generally speaking, the
reconstruction of unknown sources is ill-posed from practical noisy measurement data. Inverse source problems for parabolic
equations were studied in Refs. [1 —8] and the references therein. When the initial conditions ¢(x), ¢(x) and the source
F(x, t) are known, the above-mentioned problem (1) is well-posed. This is the so-called direct problem. In this paper, the in-
verse problem we consider can be stated as follows. For given measurement data {v(0, ), v(a, 1), v(b,1),v(l,1),0<t<T,
a#b}, the point source F(x,t) =A(1)8(x —s) from problem (1) needs to be determined, that is, to find the source location
s and the intensity A(#). Here, we assume that of the measurements of two points a and b, one chosen upstream from the
source and the other downstream, are made based on the previous knowledge of the source location. Without loss of generali-
ty, we suppose that 0 <a <s <b <0.

The above inverse problem is different from that studied in our previous study ", although we are all interested in the de-
termination of pollution point source. In Ref. [6], only the first equation of (1) was considered to reconstruct the unknown
source from the measurement data of the concentration u. However, in this paper we consider the weakly coupled equations
of u and v where the measurement data are taken indirectly on the concentration v, which is naturally a different problem. The
boundary conditions and the measurement data taken in this paper are also different from that in Ref. [8] for the same cou-
pled equations.

1 Identifiability of the Point Source
Let
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2

\%4 Vv
u(x, £) = W,(x, t)eXp(sz—(4D+R)t) 2)
(x, 1) =W,(x, t)ex lx—(K+R)t (3)
vin b =hixn e p(zD 4D )
Then problem (1) is equal to the following problem:
W, DaZWl—F t +(L2+R)t W, DaZWZ—RW t 0,0);0<t<T
ot - axz - (X, )exp( 2Dx 4D )9 ot - axz - 1(x7 ) XE( s )7 <tr<
oW, (x, 1) 74 B oW, (x, 1) \% _ (4)
o +2DW1(x,t) ve00 =0, o +2DW2(x,t) vo0s =0 0<t<T
\%4 \%4
W, (x,0) —d)(x)exp( —2Dx), W,(x,0) _l/f(x)exp( —2Dx) xe(0,0)

Theorem 1 For given x,, 7 satisfying 0<<x,</,0<7<1, <t, < + oo, assume that W, (x, 1) and W,(x, 1) satisfy

oW ER4 ow, ER/
atl - ale =0, atz—D ax; =RW,(x, 1) xe(0,);r<t<t,
oW, (x,1) v aW,(x, 1) v (5)
T+2—le(x, N ..,=0, #Jrﬁwz(x, Nl..,,=0 r<r<1
W,(x, 1), W,(x,7)eL’(0,1)
If W,(x,,t)=0 for te(t,,t,) and tan ann'xo#ZDVI;*n' forn=1,2, ..., then W (x,7) =0 and W,(x, 7) =0 in the sense of

L(0,10).
Proof By the Fourier expansion, the solutions of (5) can be deduced such that

W,(x, 1) = Coexp(‘%(t —T))Xo(x) + 2 Cnexp( —D(HT’IT)z(t -7 )Xn(x) (6)

n=1

W,(x, 1) = Eoexp(‘%(t — 7 )Xo(x) + iE,,exp( _D(HTTr)z(t —7) )Xn(x) +

n=1

RX,(0 [ fexp( V(1 =0 )ar + RS x,00 [ £ (mexp( - D("T) (1 = )ar (7)
T 4D n=1 ! T ! l
where
1 1 1
C =J W, (x,7)X,(x)dx, E, =f W,(x, )X, (x)dx, £,(1) =f W, (x, )X, (x)dx
0 0 0
%4 nmw VI . (nw
X =d - X =d nmoy_ 2 nw
0 = - ). %00 = e A7) Lin( 72
are normalized eigenfunctions; d,,n =0, 1, ... are the normalized coefficients.

By substituting W, (x, t) given by Eq. (6) into the expression of w,(x, f), it follows that

W,(x, 1) = Ao(t)exp(%(t —T))Xo(x) + gAn(t)exp( —D(”T“)Z(t —7))Xn(x) (8)

where A (1) =E, + R(t - 1) C,. Using the condition W,(x,, 1) =0, te (¢, ), we have

Ao(z)exp(%(; —7))X0(x0) + gA”(t)exp( —D(”T“)z(t —7))Xn(xo) =0 te(tt)

Here, we consider the following function of a complex variable

- 2
P(2) = A(DX(x) + XA, @exp( = (D(ET) + )z - 1))X,(x)
n=1 l 4D
Then @(z) is analytic in Re z=1 + « for any « >0, where Re z indicates the real part of z. Since ¢(z) =0 for z satisfying
0<t,<Re z<t,,and Im z =0, the unique extension theorem for analytic functions'’ yields that ¢(z) =0 for all z such that
Re z=7 +a >0. So, it follows that
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A(DX,(x,) + gAn(t)exp( - (D(”7“)2 +%)(z -7) )Xn(xo) =0 te(r +)

Passing in this equality to the limit for #— + o, we can obtain that

. . VI . /n

limA,(7) =0, limA (¢ oy L (M )| =0

limAy(1) = 0. lima, ([ cos( ", ) = 75~ sin( "7, )|
Using the condition tan njxo#szT forn=1,2, ..., we have

[ Vi

limA,(7) = im[E, +R(t-7)C,] =0  n=0,1,2, ...

Therefore, C, =0 and E, =0. Obviously, W,(x,7) = W,(x,7) =0 in L*(0, I) because the system of the eigenfunctions
{X,(x)} is complete in L*(0,1).

In view of (2) and (3), theorem 1 implies the following result.

Theorem 2 For T" < T, assume that u(x, t) satisfies

Llul(x,t) =0, L[v]l(x,t) = Ru(x,1) xe (0,D),t e (T",T)
ou(0,1) _ ou(l,t) ov(0,1) _ov(l 1) _

ox  oex  ex  ox =0 te (I, D) ®)
u(x, T"),v(x, T*) e L*(0,]) x e (0,

Then the following results hold:

)If v(b,f) =0 for te (T, T), where the observation point b e (0, [) satisfies tan n—ﬂb;ﬁZan forall n=1,2, ..., then

l Vi
u(x, T*) =0 and v(x, T*) =0 in L*(0, ).
2)If v(0, 1) =0 or v(I, 1) =0 for te (T*,T), then u(x, T*) =0 and v(x, T*) =0 in L*(0, [).
In the following, we consider the uniqueness of the point source identification. Let (u,(x, ), v,(x, t)) be the solution of
(1) with respect to F,(x,t) =A,(1)6(x-5,),i=1,2.
Theorem 3 Let F,(x,t) =A,(1)8(x —s;), where s, e (a, b) C(0, ) and the nonnegative intensity A,(f) e L*(0, T) satis-
fy A,(7) =0 for T° <t<T. Then

{(vi(0,6) =v,(0,8),v,(a,t) =v,(a,t),v(b,t) =v,(b,t),v,(l,t) =v,(,1),0 <t < T}

implies s, =5, and A,(f) =A,(#) in L*(0, T).
Proof Let U, =u, —u,, U, =v, —v,. Then U, and U, satisfy

LIU1(x,t) = A, (D8(x =s,) =X, ()d(x —=s,), LIU,](x,t) = RU,(x,1) xe (0,);te (0,7

U, (0, ¢ oU, (I, t U, (0, ¢t oU, (I, t
(0.0 UL _ o 9UN0.n Ui 0T (10)
ax ox 0x 0x

U (x,0) =U,(x,0) =0 x e (0,)

and {U,(0,1) =U,(a,t) =U,(b,t) =U,(1,1) =0,0<t<T}.

Step 1  Consider the solutions U,, U, of (10) in (0,1) x(T", T). So, U, satisfy the homogeneous equation L[ U,] (x, 1)
=0, where the right-hand side of the first equation is zero because A(7) =0 for re (T", T). Moreover, since U,(0, 1) =
U,(L,t) =0,te(T", T), from theorem 2 we immediately have U,(x, T*) =0 and U,(x, T*) =0 in L*(0,1).

Step 2 Consider the solutions U,, U, of (10) in (0, a) x(0,T"). Since a <s, <b, it follows that

LIU]I(x,t) =0, L[U,]J(x,t) = RU,(x,1) x e (0,a);t e (0,T")

aU, (0, ¢ oU,(0, ¢ .
(0.9 _ 306,00, 9 =0, U,(0,1) = Uy(a,t) =0 te (0, T (11)
ax 0x

U (x,0) =U,(x,0) =0 x e (0,a)

Let r,(i =1,2) be the solutions of the characteristic equation — D’ —Vr+R =0, and then r, = —V- 25 +4DR, r, =
/Y2
—V+ 2; +4DR. Let 9, =¢"" and h,(x) be the solutions of the differential equation

Dh'" (x) + Vh!(x) - Rh,(x) =6,(x) h,(0) =h,(a) =0 (12)
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Multiplying the first equation of (11) by A, (x), the second equation by 6,(x) and integrating with respect to x and ¢ on
(0,a) x(0,T"), we obtain

Jh(x)U(xT )dx +

"+ VU, ] dr = f:j:U,(x, 16, (x) dxdt
0

a . T aU a T .a
0,000,067 )dx +f [_D—Zg, +pUg, +vUe, | 4t =R[ [ U(x06,(x)dxdr
0 0 ax o 0o Jo

where [f]”: =f(b) - f(a). Hence,

“oU,(a, t)

RDH/ (a)f U,(a, )dt — RDH/ (0)[ U,(0, 1) dr =—De(a)f »

fal(x)Uz(x, T")dx —Rf h(x)U,(x, T")dx (13)

On the other hand, multiplying the first equation of (11) by h,(x), the second equation by 6,(x) and integrating with re-
spect to x and 7 on (0, a) x (0, T"), we have simultaneously

CUy(an

RDK! (a)j U,(a, t)dt — RDH! (0)[ U,(0, 1) dr =—D9(a)f »

jaz(x)Uz(x, T")dx —Rf h(x)U,(x, T")dx (14)

X

Let u,(x) =e "". Noting that U,(x, T") =U,(x, T") =0 proven in step 1, we obtain from (13) and (14) that

L (@) (@) = (@ hi(@)] [ U@, ndr = [u,(a)h1(0) ~u(@)hi(0)][ U,(0.0ds

Moreover, multiplying the differential equation (12) by u,(x), and integrating with x on (0, a), we have u,(a) h)(a) =
h;(0) +a/D. Hence,

[A}(0) —hQ(O)]fO U(a,0)dr = [p,(a) h;(0) —m(a)h;(o)]fo U, (0, ndr (15)

6,(a)
6,(a)

with respect to x and ¢ over (0, a) x (0, T"), we obtain

Let 6,(x) =6,(x) -

0,(x), which satisfies 8,(a) =0. Multiplying the first equation of (11) by 6,(x), and integrating

T" T
De;(a)f U,(a,ndt = (DO'(0) +voa(0))f U, (0, 1) dr (16)
0 0
From (15) and (16), it follows that
T T
f U, (0, 1) dt =f U,(a,ndt =0
0 0

since A = (D#.(0) +V9,(0))[h(0) —hy(0)] — DO, (a)lw,(a)h;(0) —u,(a)h,(0)] <0 which can be directly obtained
from 0,(x), 6,(x), and u,(x).
T T"
Step 3 We proceed as in the process of step 2 and obtainf U (b, t)dt = f U/(l,ndt =0.
0 0
Step 4 Multiplying the first equation of (10) by 6,(x),i=1,2, and integrating with respect to x and ¢ on (0, /) x (0,
T"), we have

jf L[U,](x,t)e[(x)dtdx=0[(s,)f A](t)dz—a,,(sz)f L(ndr  i=1,2

By the properties of U,(x, t) and integrating by part, we find that

>
('D\
>
>
(D~
I
>
('D\

-
where A = f A(f)dr. Since r, #r, and A, >0, there are s, =5, and A, = A,.
0

2

Step5 Lets=s, =s,, W,(x,1) = U (x, t)exp(ZD (X—D+R) ) i=1,2. By Egs. (6) and (7) and the Duhamel prin-

[N}
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ciple, we obtain

W,(x1) = exp( = XX, [ exp( (15 4 R)7)alm) =4 (eDrexp( 2 (1 - Jar +

z exp( )X (s)X,,(x)f exp( (E +R) )()\2(7) —Al(r))exp( —D(nTTr)z(t —7))d7
W,(x, 1) = RXO(x)f;fO(r)exp(‘%(t - r))dr +R§1Xn(x)f;fn(r)exp( —D(nTTr)Z(t - r))dr

1
where f, () =f W,(x, )X, (x)dx. Thus,
0

W,(x,1) = Rexp( 5 )x (5)X, (x)J j exp((— +R) )(Az(f) —A,(T))exp(%(; _T))der +
R Z exp( 7s)xn( X, (x)j f exp( (7 + R) )(AZ(T) - AI(T))exp( - D(”T“)Z(r -7 )drdr (17)
By exchanging the order of integration and simple computation, we rewrite (17) as

W,(x,1) = f;exp((% +R)T)()\2(T) ~A, () K(x,t —7)dr (18)

2

where K(x,t —7) = R(t —T)exp( —%s)(Xo(s)Xo(x)exp(‘%(t —T))+ gX”(s)Xn(x)exp( —D(nTTr) (t —T))) . The

condition U, ([, t) =0 implies
t VZ
[ exp( (35 +R)7)A(m) =X (1)KLt =7ydr =0

According to Titchmarsh’s convolution theorem'” on the L' function, the functions A,(#) — A,(#) and K(/, f) must be zero
identically at least in (0, 7") and (0, 7"), with 7" and 7" such that 7" + T"=T. If K(Il,t) =0,te (0, T"), VT" >0, by
theorem 1 and the uniqueness of the analytic function we know that K(/,f) =0,7e (0, + ), thatis, X, (s)X,(]) =0,n =
0,1,2, .... Obviously, it is impossible since X, (s) X, () #0. Therefore, A, (1) =A,(#),te(0,7).

Remark 1 We have proven the uniqueness for our inverse problem. As for the local Lipschitz stability, it can be estab-
lished by an analogous technique applied in Ref. [5].

2 Inversion Scheme for Determining the Point Source

Now we consider the inverse scheme of recovering (s, A(#)). Our inversion scheme is based on the proof of theorem 3.
Step 1 Determining u(x, T") and v(x, T*) by the measured data v(b, r) or v(/, ) from the following system

Llu]l(x,t) =0, L[v](x,t) = Ru(x, 1) xe (0,D); te (T, T
(0.0 _oulln) _ o w00 _ (D _o o } (19)
ax  ex O ax  ax e

From Egs. (2) to (8), the above backward problem is formulated to the first kind of Fredholm integral equation which can
be solved by regularlzatlon methods, see Refs [11 —14].

Step 2 Computing j u(0, 7)dr and f u(l, £)dr . In view of (13) and (14), it follows that

(@)

[ (a)h(a) —Mz(a)h;(a)]fo u(a, ) dt - [, (a)h!(0) —,Lz(a)h;(O)]fO u(0, ydr =
Deg(a)fru(a, ndt - (D6'(0) + vea(O))jT'u(o, ndt = &,(a)

where

¢(a) =u1(a){fa[el(x)v(x, T°) —Rh,(x)u(x, T")]dx +fT~[Dv6; + V6,15 di }=

w,(a) {j:[ﬂz(x)v(x, T") = Rh,(x)u(x,T")]dx +j0 [Dvo) + Vvo,]; dt}

&(a) =- fuea(x) u(x, T*)dx
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T T

Then, solve system (20) for the value j u(0, r)dt . Compute f u(l, t) dt simultaneously from the following system,
0

0

T" T" B b
[, (b) g (1) —,Lz(b)q;(l)]j u(l, 1)dt — [11,(b) g} (b) —Mz(b)q;(b)]f u(b, r)d =§R(D)
- ’ - ’ (2D
(Do,(1) +V0b(l))f u(l, 1)de —Deg(b)j u(b, 1)dt = ¢,(b)
where
£,(b) =M,(b){f[0l(x)v(x, T°) - Rq,(x)u(x, T")]dx +fT.[Dv0{ + Vv, 1,de} -
,(B) {f [6,(0)v(x, T*) —Rq,(x)u(x, T")]dx +fT [Dvo, + Vvez]’bdt}
_ ! * _ ol(b)
£.(a) _—fbe,,(x)u(x,r v 0,00 = 6,(0) = L6 (0
and g,(x) is the solution of the differential equation
Dq"(x) +Vg/'(x) —Rq,(x) =0,(x) q.(b) =¢q,() =0 (22)

Step 3 Identifying the location s. Multiplying the first equation of (1) by €™, i =1,2 and integrating with respect to x
and 7 on (0,]) x (0, T"), we obtain

T = f;[u(x, T") —(x)]e"dx —Df:[e“ a”(ﬂ%t)]; dt +Df:[r[u(x, t)e”](’)dt +

vj [u(x,ne]ldt i =1,2 (23)

Then

s =1 m(%) (24)

where M, is the right hand of Eq. (23).
Step 4 Identifying the intensity A(¢). In terms of (7) and (19), we have

Vi

0 —(‘% +R)¢)(A0exp(%;)xo(x) + iA”exp( —D(nTw)zt)X”(x) +f;exp( (% +R)T)/\(T)K(x,l —T)dT)

v(x,t) = exp(
(25)

where

C, = fld)(x)Xn(x)dx, E = flzp(x)Xn(x)dx, A =E, +RiC,

K(x,t —7) = R(t —T)exp( —%s)(XO(S)XO(x)exp(L%(z —7-)) + gxn(s)X"(x)exp( —D("T“)z(f —’T)))

The problem we have to solve is to determine intensity A(¢) satisfying Eq. (25) by one measurement data of v(0, 1), v(a,
t),v(b, 1) or v(l,t). Taking into account the reconstruction accuracy of A(7), we prefer to select the measurement data v( b,
t) or v([,t) to determine A(?).

3 Numerical Examples

We test our inversion scheme from a classical model which is taken from Ref. [ 15]. More precisely, we consider the pollu-
tion process in a portion of a river of length / =1 000 m and during a period 7=3. 6 h and 7" =3 h, the diffusion coefficient
D =29 m®/s, with the velocity of the watershed V =0. 66 m/s and the self-purifying coefficient R =1. 01 x 10~ s. The initial
pollution we take here is ¢p(x) =0. The source is located at s =400 m and the measurement points chosen are @ =200 m and
b =600 m.

To test the stability of the inversion scheme, we use noisy data generated by

u(x,t;) =u(x,t) +u(x,t)e(2rand (1) —1) x =0,a,b,1

where u(x, t;) are exact data simulated by fully explicit finite difference approximation for the direct problem, rand (1) is a
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random number between (0, 1) and the magnitude € indicates the relative error. The numerical results are shown in the origi-
nal domain (0, [) x (0, T). Although there are many methods to solve the first kind of integral equation which is formulated
from the backward problem (19), the reconstructions u(x, T7*) and v(x, T") obtained at the same time are not satisfied in
step 4 of our numerical examples. There is also a gap between the theoretical background and the numerical implementation
of the method. In other words, some new methods need to be developed to solve the backward problem (19). So, in the fol-
lowing computation we use the simulation data of u(x, T") and v(x, T") obtained by computing the direct problem to deter-
mine the location s. In our inverse scheme, we solve the discrete system by using a well known pseudo-inverse regularization
method"® for ill-conditional matrices with the tolerance max(size(A)) x norm(A) x eps, where “max”, “size”, “norm” and
“eps” are Matlab functions.
Example 1 The intensity

Al = Zakexp( -B(t =)D

where the configuration coefficients are o, =120, a, =200, o, =160, 8, =10 °, 8, =2 x10™°,8, =10 "°, 7, =3 000 s, 7, =
5000 s, and 7, =7 000 s.

We obtain s =434. 3 with € =0. 005, s =436.7 with € =0. 05 by formula (24). Using these numerical results of s, we re-
cover the intensity A(7). The inverse results of A(#) with noisy data are shown in Fig. 1.

250t 250 o
—«— Approximation of A(t) —+— Approximation of A(t)
200+ —— Exact solution of A (¢) 200 —— FExact solution of A (¢)
150 1 150
~100f ~< 100
50 50
01 0
-50 - . . ‘ - - -50 - - - : - -
0 2 4 6 8 10 12 0 2 4 6 8 10 12
t/(10°s) ¢/(10%s)
(a) (b)

Fig.1 A(?) recovered from data u(b, ) at b =600 with relative error for the case of example 1. (a) € =0.005; (b) € =0.05

Example 2 The intensity

0.001(t —2 160)(8 640 —1) 2160 <t < 8 640

D) = {0 other

In this example, we obtain s =433. 9 with e =0. 005, s =437. 1 with € =0. 05 by formula (24). Then using these numeri-
cal values of s, we recover the intensity A(#) which is shown in Fig.2.

—+— Approximation of A(¢) 127
—— Exact solution of A ()

127

—+— Approximation of A(t)

10 10+ —— Exact solution of A ()
8t 8t
61 6}
~ ~
41 4r
2+ 2t
04 01
- . . ) -2 - y !
20 8 10 12 0 8 10 12

6
t/(10°s)
(a)

Fig.2 A(?) recovered from data u(b, t) at b =600 with relative error for the case of example 2. (a) e =0.005;€ =0. 05

6
t/(10%s)
(b)

4 Conclusion and Discussion

In this paper, we consider an inverse problem modeling the point source detection in a watershed. The pollution diffusion
process is governed by a one-dimensional linear parabolic system with the unknown source term A(#)8(x —s). The unique-
ness and stability for determining the source (location and intensity) have been studied. Also we present an inversion scheme
with two numerical examples. From the numerical implementations, we find that the intensity of the point source can be iden-
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tified with a satisfactory accuracy, even if the input measurement data contain a large amount of noise. The source location
can be successfully determined if the backward parabolic problem (19) is satisfactorily solved. Although we have proved that
u(x, T") and v(x, T") can be uniquely determined in the backward problem (19), how to reconstruct them at the same time
is an interesting problem and requires further studies.
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