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Abstract: In order to enhance the location estimation performance
of mobile station( MS) tracking and positioning, a new method of
mobile location optimal estimation based on the federated
filtering structure and the simplified unscented Kalman filter
(UKF) is presented. The proposed algorithm uses the Singer
mobile statement model as the reference system, and the
simplified UKF as the subfilters. The subfilters receive the two
groups of independently detected time difference of arrival
(TDOA) measurement inputs and Doppler measurement inputs,
and produce local estimation outputs to the main estimator. Then
the main estimator performs the optimal fusion of the local
estimation outputs according to the scalar weighted rule, and a
global optimal or suboptimal estimation result is achieved. Finally
the main estimator gives feedback and reset information to the
subfilters and the reference system for next step estimation. In the
simulations, the estimation performance of the proposed algorithm
is evaluated and compared with the simplified UKF method with
TDOA or Doppler measurement alone. The simulation results
demonstrate that the proposed algorithm can effectively reduce
the location estimation error and variance of the MS, and has
favorable performance in both root mean square error( RMSE) and
mean error cumulative distribution function( CDF).
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obile location estimation involves locating the posi-
Mtion of a mobile station( MS) based on the measured
radio signals from its neighborhood base stations( BSs) in
wireless communications networks, such as radar, multi-sen-
sor, cellular and digital broadcasting systems. Mobile loca-
tion estimation has attracted considerable interest in recent
researches. There are a number of possible applications for
mobile location estimation, including Emergency-911'",
fleet management, navigation systems, and other location-
based services( LBSs).

Typical measuring techniques for locating a mobile station
in two dimensions can be categorized into received signal
strength( RSS), time of arrival( TOA), time difference of ar-
rival( TDOA) '™, and the angle of arrival( AOA). With the
development of modern signal processing techniques,
Doppler measurements in the received signals are employed
and proved to enhance the performance of maneuvering
tracking and positioning'* ™.

In order to better estimate a mobile’s location, data fusion
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filtering approaches with multiple measurements are often
investigated and used in reality systems. There are two repre-
sentative data fusion methods. One is the JDL model based
fusion architecture presented in Ref. [5], which needs four
levels of fusion with TOA/TDOA data and the Taylor series
method and fits mainly for a stationary positioning case; the
other is the Kalman filtering ( KF) based data fusion, inclu-
ding measurement fusion and statement fusion'®”". The state-
ment fusion method can be further divided into concentrated
fusion and distributed fusion. Among the various KF data fu-
sion methods, the federated KF filter proposed by Carlson"
is the most widely recognized. As one kind of distributed
measurement fusion method, it carries lower computation
complexity than the concentrated measurement fusion ap-
proach, and has favorable performances in design flexibility
and fault tolerance.

In this paper, a federated filter method with TDOA/
Doppler measurements based on the simplified unscented
Kalman filter( UKF) is proposed. As illustrated in Fig. 1, the
mobile statement model works as the reference system. The
simplified UKF subfilters receive the measurements directly
from the sensors, and provide the state estimate and error co-
variance information to the main estimator for recombina-
tion. Then the main estimator performs optimal fusion and
outputs a global optimal or nearly global optimal estimation.
Finally, the main estimator gives feedback and reset infor-
mation to the subfilters and the reference system.
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Fig.1 The proposed federated filter algorithm

1 System Description
1.1 Mobile state model

The Singer model® is chosen as the movement statement
model of the MS. Let the state of the MS at time instant k be
defined as the vector x, = {x,, X, X, ¥;» ¥,» ¥, } - The state
formulations are as follows:
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where T is the sampling period; « is the reciprocal of the
acceleration time constant; a-fn is the variance of MS acceler-
ation; q, , ~ N(0, Q,_,) is the additive white Gaussian
process noise at the (k — 1)-th step with covariance matrix
0O, .. The values of qy> I, J = 1, 2,3 can be found in Ref.
[9].

1.2 Measurement models

()}

1 1 1
Letyk (h (n (1

= { Y1 Yagsr ooos yN_H}T be the range difference

observation vector by the TDOA method at time instant k.
The TDOA measurement equations can be expressed as

v =H (x.,k) +v (k) (4)

H (x, k) ={r, (k),r (b, .. r, (b} (5)

ri,l(k) = N (xBi _xl,k)2 + (Vi _x“)z -/ (xg _xl,k)z + (g _XA,k)z
i=2,3,..,.N (6)

where (xg,, y5),i=1,2, ..., N indicates the position of the
i-th BS; N is the number of the BSs; r,, (k) is the differ-
ence between the range from MS to the i-th BS and the
range from MS to the first BS at step k. v, (k) ~ N(O,
R,(k)) is the TDOA additive measurement noise at step k.
Let y” = {y\, yf,l, ...» i )" be the radical velocity ob-
servation vector in the Doppler method at time instant k. The
Doppler measurement equations can be written as

v =H,(x,. k) +v,(k) (7)
Hy(x, k) = (v, ,(b),v,,(k), ..oy (B} (8)

(X1 = X)X, + (X4, = Ypi) X5,

«/(xBi _xl,k)z + (Vg _x4,k)2

v, (k) = i=1,2,....N

(9)

where v,(k) ~N(0, R,(k)) is the Doppler additive measure-
ment noise at step k.

1.3 Problem statement

Based on the discussions above, the overall dynamic mod-
el of the system can be depicted as

x, =flx,_,,k-1) +q,,

y! =H/(x,, k) +v,(k) (0

j=1,2}

Here the two groups of TDOA/Doppler measurements are
supposed to be independent, and measurement noises are un-

correlated, with covariance given by

E[v,(k)v; (k)] =R, (k)8;

Denote f(, . =EX,,j=1,2 as the unbiased estimation of
the MS statement from each subfilter at time step k, where

X, is the true statement value at time step k, and IA’,:,.(k) =
E{(X,-X, (X, -X, )"} =P,

ij?
covariance matrix at time step k. Thus a global optimal esti-
mation of the MS statement can be achieved by weighted
optimal data fusion. In this paper, we use the simplified UKF
estimator as the subfilters to fulfill the local filtering work,

Py

which give local estimations X , and IA’U( k), and apply the
scalar weighted optimal fusion approach in the main estima-
tor to obtain the global filtering results X o and IA’g’ .- The de-
tailed description of the proposed algorithm is presented in

section 2.
2 Federated UKF Algorithm for MS Estimation
2.1 Simplified UKF

ij=1,2  (11)

i,j=1,2 as the error

The UKF is proved to be a superior alternative to the ex-
tended Kalman filter ( EKF) for nonlinear systems'’'*'. By
virtue of the unscented transformation( UT) and chosen sam-
pling points(sigma points), the UKF is easily implemented
and can predict the state of any nonlinearity with a second
order accuracy or more.

Compared with the UKF algorithm suggested in Ref.
[10], the simplified UKF avoids augmenting the state vector
with the process and measurement noise terms, and thus it
can obtain lower computation complexity and is easier to
implement'''™*'. Using the symmetry sampling strategy''"”,
the proposed simplified UKF algorithm involves the follow-
ing steps:

1) Initialization

X, =E(x,) (12)
P, =E{(X,-X)(X,-X)"} (13)

2) Calculation of sigma points y,_,(k=1,2,...)
Xoa=1X_ ... X 1+ /n+r[0 JP,_, P, 1
(14)

where n is the dimension of the state vector; A = az(n + K)
—-n, and «a, k >0 are scaling parameters for the UT.

3) Time update

The predicted state mean X, and the predicted covariance
P, are computed as

X =fO k=1 (15)
Xk_ :ikwm (16)
Pl =x Wx,"+0,, (17)

where @, = {W, ..., W” 1 is the weight vector, and W =
I~ {w,,....,w,}) xdiag(W", ..., W) x (I ~{e,,, ...,
w,})" is the weight matrix of the 2n + 1 sigma points. The
definitions of W"” Wi“ ,i=0,1, ...,2n can be found in Ref.
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[11], with B8 >0 as a scaling parameter.

4) Measurement update

The predicted mean of the measurement Yk' , the covari-
ance of the measurement S,, and the cross-covariance of the
state and measurement C, are computed as

xo =X o X1+ Vnearo JPo - /P
(13)
Y, =H(y, .k (19)
oY o, (20)
S, =Y, W(Y,)" +R(k) (21)
Co=x; W(Y)' (22)

Then the filter gain K,, the updated state mean X,, and
updated covariance P, are computed as

K =CS,' (23)
X =X +K.(y,-Y)) (24)
Pk =ﬁk7 _KkSkKZ (25)

where for the j-th subfilter (j =1,2), we obtain
Q... =0, Hx, .k =H,(x,,k), R(k) =R,(k)

Y =yii)’ X’kz)?,v i’kzﬁ

.k

2.2 Federated filtering and data fusion

In order to efficiently recombine and fuse the subfilter
outputs and obtain an enhanced estimation result for the
MS, the scalar weighted optimal fusion method"”' is used.
Assuming that the measurement noises between the two sub-
systems are uncorrelated as discussed in section 1, the feder-
ated filtering and data fusion algorithm can be presented
with the following steps:

1) Initialization

Denote the initial estimation value vao’ the covariance
matrix IA’/.’O and the process noise covariance @, , of the sub-
filters according to the information distributing strategy, and
assume the irrelevance of the estimations between the subfil-
ters.

Py A

. s
Xio=X,0, Py=a; P,
Zai =1
J

where a;, j =1, 2 is the information distributing parameter;
X 05 Pgﬁo, ijo are initial estimation, covariance and process
noise covariance prior information of the system.

2) Time update of each subfilter

Perform time update in each subfilter, and compute the
predicted state mean and the predicted covariance of each
subfilter as Eqgs. (15) to (17).

3) Measurement update of each subfilter

Perform measurement update in each subfilter, and com-
pute the updated state mean X ..« and the updated covariance

Q/,o :alen (26)

(27)

A

P, of each subfilter as Egs. (18) to (25).

4) Data fusion

Calculate the information distributing parameter a;, j =1,
2 at step k as

-1
4= (z trll’jﬁk) trll’j,k

J

(28)

j=1.2

where trlA’j, . represents the trace of the covariance matrix
If’jﬁk. Then fuse the subfilter outputs and calculate the global
estimation and error covariance value of time step k accord-

ing to the scalar weighted optimal fusion rule as

Xg,k = Za/'Xj.k (29)
J

P, =aPb, (30)
J

5) Feedback and information reset for each subfilter
Reset the estimation value X x> the covariance matrix f’j’ .
and the process noise covariance @Q;, of the subfilters ac-
cording to the information distributing strategy for estima-
tion of time step k + 1.
Xj,k:Xg,k’ P'k:aj_lpg.k’ Qj,k:aj_l 0,

Js

(31

6) Repeat steps 2) to 5), until the mobile tracking and es-
timation at one time is finished.

3 Simulation Results

Simulation results are provided to assess the performance
of the proposed algorithm. Assume that the MS can receive
the signals from four BSs all the time. The BSs are located
at (0,0), (3 km,0), (1.5 km, 3 km), (4.5 km, 3 km). The
mobile trajectories and process noises are generated accord-
ing to the Singer model described in section 1, in which the
initial position of the MS is (150 m, 150 m), the initial ve-
locity is x, = 15 m/s, y, = 10 m/s, the reciprocal of the ac-
celeration time constant is « = 0. 8, the variance of MS ac-
celeration is ¢, =25. 6. Set the sampling interval to be T =
0.05 s and the simulation step number be 1 000. Let the
TDOA measurement noise be an additive zero-mean white
Gaussian noise with standard variance -, =30 m and covari-
ance R, = 0-121. Let the Doppler measurement noise be an
additive zero-mean white Gaussian noise with standard vari-
ance o, =4 m/s and covariance R, = ,"I. The scaling pa-
rameters for the simplified UKF subfilters are chosen to be «
=0.2,8=2,k =3 -n;n =06 is the dimension of the MS
state. The initial estimation value of the MS is assumed to be
)A(gﬁo ={1,1,0,1,1, O}T; the initial covariance matrix f’j_o =
diag(6,16,1,6,16,1); the initial information distributing
parameter a, =a, =1/2.

Fig. 2 shows the estimated and actual trajectories of the
MS in the last 200 simulation steps by the simplified UKF
algorithm with the TDOA measurement, the simplified UKF
algorithm with the Doppler measurement, and the proposed
federated UKF algorithm. It can be seen from the results that
the proposed filtering fusion method has better estimation
accuracy than the Doppler-UKF method, with its curve being
smoother than the TDOA-UKF method.
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Fig.2 The estimated and actual trajectories of the MS by

three algorithms from a single realization

2.1

Fig. 3 displays the position root mean square error
(RMSE) vs. time instant step by the three algorithms
through 20 Monte Carlo simulations. The position RMSE at
time step k is defined as

M

1

R, = M ,[(;cm,k _xk)z + (Fo _yk)z] (32)

where M is the number of the Monte Carlo runs. The result
demonstrates that the estimation error and variance perform-
ance is effectively mitigated by the proposed method com-
pared with using the simplified UKF with TDOA or Doppler
alone.
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Fig.3 Comparison of position RMSE vs. time instant step

Fig. 4 gives the comparison of position mean error CDF
performance of the three methods through 20 Monte Carlo
simulations. The position mean error at time step & is defined
as

=x)" + (P, —¥0°1 (33)

M, = iz N/[(&m.k
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Fig.4 Comparison of position mean error CDF

It can be clearly seen that the location estimation error of
the TDOA-UKF method is within 29. 12 m by 67%, and
32.88 m by 95% . The location estimation error of the
Doppler-UKF method is within 15. 85 m by 67% , and 16. 95
m by 95% . The location estimation error of the proposed al-
gorithm is within 12. 79 m by 67%, and 13.29 m by 95%.
The CDF performance evaluation result further validates the
superiority of the proposed algorithm over the other two
methods.

4 Conclusion

A federated filter method with TDOA and Doppler meas-
urements based on the simplified UKF is proposed. The sug-
gested algorithm has three advantages. First, the application
of the federated filtering structure allows global optimal fu-
sion of different measurements to be achieved with faster
convergence. Secondly, the employment of the simplified
UKEF as a subfilter improves the performance in solving non-
linear problems compared with the traditional KF or EKF
methods. Finally, the use of the scalar weighted optimal fu-
sion method in the main estimator makes the algorithm easi-
er to realize and more applicable compared with the matrix
weighted fusion method. The simulation results validate the
efficiency of the presented algorithm in mitigating the esti-
mation error and variance, and enhancing the RSME and po-
sition mean error CDF performance for MS location positio-
ning. Further work will emphasize solving the problem of
correlations between the subsystems or the measurements in
communications networks, which will be better employed to
achieve accurate mobile tracking and estimation perform-
ance.
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