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Abstract: A new modular solution to the state explosion problem
caused by the Markov-based modular solution of dynamic
multiple-phased systems is proposed. First, the solution makes
full use of the static parts of dynamic multiple-phased systems
and constructs cross-phase dynamic modules by combining the
dynamic modules of phase fault trees. Secondly, the system
binary decision diagram ( BDD) from a modularized multiple-
phased system (MPS)is generated by using variable ordering and
BDD operations. The computational formulations of the BDD
node event probability are derived for various node links and the
system reliability results are figured out. Finally, a hypothetical
multiple-phased system is given to demonstrate the advantages of
the dynamic modular solution when the Markov state space and
the size of the system BDD are reduced.
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he mission of a dynamic multiple-phased system

(MPS)is characterized by several phases in time. The
system structure, failure and recovery processes, and suc-
cess criteria may change from phase to phase. During the
dynamic fault tree analysis process!”, the fault tree model
of the system structure of a MPS is internally and automati-
cally converted to a Markov model, which is added to the
dynamic behavior information. However, the size of the
Markov model expands exponentially with the increase in
the size of the system. Therefore, it can be computationally
intensive to solve the model .

The modularization of a large fault tree before analysis
may achieve high computational efficiency'”’. In 2004, Ou
and Dugan'' presented an approach to the modularization of
a MPS. This modular approach modularizes the whole MPS
into its static and dynamic modules. During the application
of the “total” modular solution to a large real MPS instance,
the advantage of the BDD technique cannot be exploited
fully due to the commonly encountered inconsistent module
joints” ™. For example, if there is only one module joint
M,M,, the BDD solution can be used. But if there are two
module joints M, M, and M,M,M,, the BDD solution is not
enough to fulfill the task of the joint probability computation
and the Markov solution must be used. In order to further
alleviate the state explosion problem caused by Markov
models, a dynamic modular solution is presented to fully
exploit the power of the BDD technique, which only modu-
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larizes the dynamic part of the MPS (i.e., only dynamic
phase modules are used) .

1 HEMPS

We use a reference MPS, which is similar to the hypo-
thetical MPS ( HEMPS) presented in Ref. [4], to demon-
strate the solutions.

The fault tree of the HEMPS is shown in Fig. 1. It con-
sists of three consecutive phases. Each phase has a distinct
reliability requirement, and thus produces a different fault
tree. PFT1, PFT2 and PFT3 denote fault trees for phases 1,
2 and 3 of the HEMPS, respectively.
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Fig. 1 A hypothetical example of multiple-phased system.
(a) Phase 1; (b) Phase 2; (c¢) Phase 3.

2 Total Modular Solution
2.1 Generation of modules

Based on the most efficient algorithm proposed by Dutuit
and Rauzym, the HEMPS is modularized to three modules
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M,, M, and M,. The basic events in each module are ex-
pressed as

M| :{A’ B’ Cs S}9 MQZ{D’ E’ F’ G}
M3:{H’ K, I, J}

The modularized HEMPS is shown in Fig. 2.

PFT1 PFT2 PFT3
My, My M, My, My, M, Mz Mys Ms;

Fig. 2 Modularized HEMPS

2.2 Generation of system BDD

The system BDD for the modularized HEMPS is genera-
ted by a variable ordering in the widely used backward PDO
form"™, i.e., M, , <M, ,<M, <M, <M, ,<M, <
M, <M, , <M, |, as shown in Tab. 1.

The reliability of HEMPS R is the sum of the probabili-
ties of the disjoint paths from the root to the terminal O ver-
tex through the BDD, i.e.

Tab.1 System BDD for modularized HEMPS in Fig. 2

Node. index Node. v Node. then Node. else
1 M, ; 2 12
2 M, , 1 3
3 M, 1 4
4 M, ;5 5 10
5 M, , 1 6
6 M, 1 7
7 M; 5 1 8
8 M; , 1 9
9 M; 1 0
10 M, , 1 11
11 M, 1 8
12 M, , 1 13
13 M, 1 10

2.3 Computation of joint probability for static module

Module M, is static through all phases. The BDD-based
solution technique in Ref. [5] can be directly applied to
compute the consistent joint probability P{M, M, ,M, ,}
or P{M, M, ,} without any modification.

Due to M, M, ,M, , =M, , +M, , +M, ,, the proba-
bility P{M, M, ,M, ,} is the sum of the probabilities of
the disjoint paths from the root to the terminal 0 vertex
through the BDD encoding M, , + M, , + M, 5, and the
probability P{M, /M, ,} is that through the BDD encoding
M, , +M, ,, as shown in Tab. 2.

Tab.2 Joint BDDs encoding M, | +M, , +M, ; and M, , + M, ,

Node. index Mo, + My, 2 + My, 5 M,  +M, ,
Node. v Node. then Node. else Node. v Node. then Node. else
1 D, 2 0 D, 5 0
2 E; 1 3 D, 3 6
3 G, 1 4 E, | 4
4 F; 1 0 G, | 5
3 F, 1 0
6 E, 1 7
! G, 1 0

Although module M, is static through all phases, the
BDD-based technique cannot be directly applied to compute
the inconsistent joint probability P {M, M, ,M, ,}, be-
cause it can not be represented as the sum of the probabili-
ties of the disjoint paths from the root to the terminal O or 1
vertex through the BDD encoding M, , + M, , + M, ,. To
calculate the joint probability P{M, ‘M, ,M, ,}, we refer
to the Markov chain-based calculation procedure.

First, we work out the state space for M,. The underly-
ing stochastic process representing the state evolution of M,
during each phase is a CTMC. The generator matrix is
shown in Tab.3. Secondly, the system initial state
“DEFG” is set and the Markov chain of the phase at time
T, is solved. The probabilities at time 7', of the failing
states of M, | are set to zero. Subsequently, the Markov
chain at time 7, + T, is solved. And the probabilities at
time T, + 7T, of the failing states of M, , are set to zero. Fi-

nally, the Markov chain at time T, + T, + T, is solved to
obtain the joint probability P{M, /M, ,M, ,} by summing
up all the probabilities of the failing states of M, ;.

3 Dynamic Modular Solution

Several key steps for the dynamic modular analysis of a
MPS are sketched out as follows: 1) Dynamic phase mod-
ules are found; 2) The system BDD which encodes the
modularized MPS is generated; 3) The system BDD is eval-
uated to produce system reliability results.

3.1 Generation of dynamic modules

The phase modules of a MPS are formed by using the
same method as the total modular solution mentioned a-
bove. But here we only retain the dynamic modules.

For our HEMPS, module M, is static, so it is dropped
off and only two dynamic modules M, and M, are used.
The new modularized HEMPS is shown in Fig. 3.
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Tab.3 Generator matrix for CTMC chains of module M,

State DEF DEG DFG EFG DE DG DF EG EF GF F D X

DEFG Ag Ap Ap Ap

DEF Ap Ag Ap

DEG Ag Ag Ap

DFG Ap Ag Ap

EFG Ap Ag Ag

DE Ag Ap
DG A Ap
DF Ap Ap
EG

EF Ag Ap
GF Ag Ap
F Ap
D Ap

PFTI PFT2 PFT3 E{A,G,} + E{A,G, } (2)

”@@gfj@ 7

Fig.3 New modularized HEMPS
3.2 Generation of system BDD

The system BDD for the modularized HEMPS is genera-
ted by a variable ordering of M, | <M, , <M, ; <M, | <
M, , <M, ,<E,<E,<E <G,;<G,<G, <F,<F <D,
<D, < D,, as shown in Tab.4. Here, module events are
ordered in forward PDO form to make the subsequent joint
probability computation smooth. Basic events are ordered
in backward PDO form to make the system BDD small.

Tab.4 System BDD for modularized HEMPS in Fig. 3

Node. index Node. v Node. then Node. else
1 M, 1 2
2 M, , 1 3
3 M, 5 4 16
4 M; 1 5
5 M, 1 6
6 M; 5 7 11
7 E; 8 9
8 D, 1 0
9 G, 8 10
10 F; 8 0
11 E, 12 13
12 D, 1 0
13 G, 12 14
14 F, 15 0
15 D, 1 0
16 M; 1 17
17 M, , 1 11

3.3 Evaluation of system BDD

For the root event of a system BDD G, there are two cases.
Case 1 If the root event of G is a basic event 4,, then

P{G=1}=E{G} =E{A,G, +AG,} =

According to the phase algebra A,A, =A.(j<i), the 0-
edge of G always links the variables of two different com-
ponents. Then we can obtain

E{A,G,} = E{A}E{G,} (3)

For the 1-edge of G, we have the following two situa-
tions: If the 1-edge of G links two basic events of different
components, then

E{A,G,} =E{A}E{G,} (4)

If the 1-edge of G links two basic events of the same com-
ponents, then

E{A,G,} =E{A,(A,H, +AH,)) =E(AAH, +AAH} (5)
According to A,A, =A; and AA, =A,(j<i), then

E{A,G,) =E{AH, +AH, -AH,)} =
E{G,} - E{A)E{H,) (6)

Case 2
then

If the root event of G is a module event M,

P{G=1}=E{G} =E{M.G, +M.G,} =
E{M.G,} +E{MG,} (7)

1) For the 0-edge of G, we have the following two situa-
tions: If the 0-edge of G links two module events of differ-
ent modules, then

E{MiGO}:E{Mi}E{GO} (8)

If the O-edge of G links two module events of the same
modules, then

E{M,G,} =E{M(MH, + M:H,)} =
E{MMH } + E(M\MH,} ~ (9)

According to the above-mentioned method, the extension
of subBDD can be performed recursively until the 0-edge of
subBDD links two module events of different modules.

2) Supposing that the 0-edge of H, links two module
events of different modules, we can obtain

E{MiMjHU} :E{MiMj}E{HO} (10)

For the 1-edge of G, we have the following two situa-
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tions: If the 1-edge of G links two module events of differ-
ent modules, then

E{M,G,} = E{M,}E{G,} (1D

If the 1-edge of G links two module events of the same
modules, then

E{M,G,} =E{M(M,H, + M,H,) } =
E{MMH,) +E(MMH,}  (12)

The extension of subBDD can be performed recursively
until the 1-edge of subBDD links two module events of dif-
ferent modules.

3) Supposing that the 1-edge of H, links two module
events of different modules, we can obtain

E{M,M,H,} = E(M,M,}E{H, ) (13)

The computation method of module joint probabilities, such
as E{MM.} and E{M M}, is the same as that in the total
modular solution. The computation method of basic event
probabilities, such as E{A,} and E{A,}, is given in Ref. [5].

3.4 Advantage of dynamic modularization

To compute the module joint probabilities of static mod-
ule M, by using the total modular solution, two BDDs with
sizes 4 and 7 shown in Tab.2 and one Markov model with
14 states shown in Tab. 3 are generated.

By using the dynamic modular solution, the size of the gen-
erated system BDD shown in Tab. 4 and that of the system
BDD for the total modular solution shown in Tab. 1 are calcu-
lated to be 17 and 13, respectively. Therefore, there is a mod-
erate increase by 17 — 13 =4 in the size of the system BDD.

As a synthesis of the above comparison, it can be conclu-
ded that by using the dynamic modular solution, large Mark-
ov models with 14 states for inconsistent joints of static mod-
ules and BDDs with sizes 4 and 7 for consistent joints for the
same static modules can be dropped off at the cost of a mod-
erate increase in the size of the system BDD (size 4).

4 Conclusion

Due to the commonly encountered inconsistent module

joints, the advantage of the BDD technique cannot be ex-
ploited fully by the total modular solution. Our dynamic
modular solution only retains the dynamic modules, and
thus can alleviate the state explosion problem caused by
Markov models and exploit the BDD solution fully.

The phase modularization can be a recursive process as
dynamic modules might have independent sub-modules in-
side. To produce system reliability results, we need to
compute the joint probability of each dynamic module at
the bottom-level of the system. Then the joint probability
of an upper dynamic module is directly derived from the
joint probabilities of its child module(s). Recursive joint
probability computation is performed until the top-level
node is reached.
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