Journal of Southeast University (English Edition)

Vol. 25, No.3, pp. 320 -325

Sept. 2009 ISSN 1003—7985

Processing and optimization of UMQL-based multimedia queries

Wu Zongda  Cao Zhongsheng

Wang Yuanzhen Li Guiling

(College of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract: Through the mapping from UMQL ( unified
multimedia query language) conditional expressions to UMQA
( unified multimedia query algebra) query operations, a
translation algorithm from a UMQL query to a UMQA query plan
is put forward, which can generate an equivalent UMQA internal
query plan for any UMQL query. Then, to improve the
execution costs of UMQA query plans effectively, equivalent
UMOQA translation formulae and general optimization strategies
are studied, and an optimization algorithm for UMQA internal
query plans is presented. This algorithm uses equivalent UMQA
translation formulae to optimize query plans, and makes the
optimized query plans accord with the optimization strategies as
much as possible. Finally, the logic implementation methods of
UMQA plans, i.e., logic implementation methods of UMQA
operators, are discussed to obtain useful target data from a
multimedia database. All of these algorithms are implemented in
a UMQL prototype system. Application results show that these
query processing techniques are feasible and applicable.

Key words: multimedia database; multimedia query language;
query optimization; unified multimedia query language

s a powerful tool for specifying users’ query require-

ments, a multimedia query language is one of the most
essential components in a multimedia database management
system. In Refs. [1 —3], we designed a general-purpose
multimedia query language called UMQL. UMQL allows
users to query multimedia data based on content information
such as structure, feature and spatio-temporal relationship,
and thus it is expressive and competent for multimedia infor-
mation retrieval. For internal representation, we subsequent-
ly designed an operator-based algebraic language called
UMQA in Ref. [4]. It has equivalent ability with UMQL
on multimedia query specification. Although there exist
many query processing proposals”’”', they are not applica-
ble because they are designed for specific query languages or
particular applications. In this paper, we propose some pro-
cessing and optimization techniques for UMQL-based multi-
media queries. Given a UMQL query having correct syntax
and semantics, the translation into an equivalent UMQA
plan, the optimization of the UMQA plan to minimize its
execution costs, and the interpretation and implementation
of the plan to obtain target multimedia information from a
multimedia database are discussed.

Received 2009-01-05.

Biographies: Wu Zongda (1983—), male, graduate; Cao Zhongsheng
(corresponding author), male, doctor, professor, caozhongsheng@ 163.
com.

Foundation item: The National High Technology Research and Develop-
ment Program of China (863 Program) (No. 2006AA01Z430).

Citation: Wu Zongda, Cao Zhongsheng, Wang Yuanzhen, et al. Process-
ing and optimization of UMQL-based multimedia queries[J]. Journal of
Southeast University ( English Edition), 2009, 25(3): 320 —325.

1 Translation from UMQL to UMQA

UMQL is based on a semi-structured data organization
model. It includes basic notions such as constructed data
type, collection data type, object, and child object. A con-
structed data type, whose instance is an object, is a com-
posite structure of predefined data types(e. g. , FLOAT,
INTEGER, etc. ), collection data types and other construc-
ted data types. The instance of a collection data type is a
composite value of one or more elements of the same data
type. Each basic item of an object is an attribute, whose
value is called an attribute value of the object; it is also
called a child object of the object when the data type of the
basic item is a collection data type or a constructed data
type. UMQL uses the same SELECT-FROM-WHERE state-
ment as SQL, but it extends the WHERE clause with struc-
ture expression, feature expression and spatio-temporal ex-
pression to accommodate complex multimedia query require-
ments. To show the syntax features of UMQL, we consider
the following example of query movies based on video con-
tents. The query retrieves the movies directed by Ang Lee,
each video of which contains one video clip. The video clip
has not only more than 55 video frames, but also three sali-
ent objects including two “horse” and one “sun”. The
“horse” has more than 75% color feature similarity with the
image “horse. bmp”, and the “sun” is located above the
“horse”. This query requirement can be described by
UMQL as follows:

Example 1

SELECT m. name FROM MOVIE m, PERSON d

WHERE clip(1) IN m. video. clips

AND horse(2), sun(1)IN clip. objects//structure expres-
sion

AND d. id = m. dir AND d. name = ‘ Ang Lee’

AND d. role = “director’ AND frame(clip) > 55

AND is(horse, “horse”) AND is(sun, “sun’)

AND color( horse, ‘horse. bmp’) > 0. 75

AND shape(sun, °sun. bmp’) > 0.75//feature expres-
sion

AND horse BEFORE[ Y] sun//spatio-temporal expres-
sion

As can be seen, in the structure expression we first de-
scribe the structure of the multimedia data by declaring some
new variables(‘m’, ‘clip’, ‘horse’, ‘sun’)and the corre-
sponding relationships among these variables. Secondly,
based on some feature functions( ‘ frame’, “is’, ‘color’), a
feature expression is used to define the semantic notions and
bottom-level features for salient content objects represented
by variables. Finally, a spatio-temporal expression is pres-
ented to define the temporal relationship between the varia-
bles ‘horse’ and ‘sun’.

UMQA™ | including a set of operators and translation for-



Processing and optimization of UMQL-based multimedia queries

321

mulae, is an internal algebra designed for representing and
processing UMQL query internally. It includes the following
operators: join(Il), normal selection( a™), structure selec-
tion(o*"), feature selection(o™), spatio-temporal selection
(™), structure expansion (%) and scan(e). The former
five operators are the implementations of join expression,
normal expression, structure expression, feature expression
and spatio-temporal expression. And the sixth one is used to
expand objects to obtain their child objects based on a struc-
ture expression. Hence, UMQA has the ability equivalent to
UMQL in multimedia query specification. A UMQA plan,
which internally is organized in the form of a binary tree, is
a solution for the execution of a UMQL query.

Definition 1 A UMQA plan 7, = (V, E) consists of
V(T,), asetof nodes, and E(T,), a set of ordered pairs of
distinct elements of V(7). Each node in V(T,) represents
an operation, and the operator belongs to (o™, a*, o,
o, n, II, ¢}. Bach edge (N, M)of E(T,)represents an
execution order between the two operations N and M; i.e.,
the operation N should be implemented before M.

Algorithm 1 Translation from UMQL to UMQA

Input: a UMQL query Q of correct syntax and semantics.

Output: an equivalent UMQA query plan T, =(V, E).

1) A UMQA query plan is constructed; i.e., V(T,) <«
B, E(T,) .

2) For each variable declaration item E,; in the FROM
clause, a scan operation is constructed by using E, as the
operating expression and put into V(7).

3) The conjunctional conditional expression of the
WHERE clause is split into five parts F|, F,, F,, F, and
F,, which are comprised of basic join, structure, normal,
feature and spatio-temporal conditional items, respectively.

4)For each join conditional item E, in F|, a join opera-
tion N, is constructed by using E|, as its operating expression
and put into V(T,). In V(T,), if the two scan nodes which
produce the join variables contained in E, are N and N’, two
edges (N, N,) and (M, N,) are generated and put into
E(T,) while other edges that originally start from N or M
are changed to start from N,.

5) A structure expansion N, is constructed by using F, as
the operating expression and put into V(7,). Supposing that
the current root node of 7, is N,, an edge (N,, N,) is gen-
erated and put into E(T,).

6) A normal selection operation N, is constructed by using
F, as the operating expression and put into V(7). Then, an
edge (N,, N,)is generated and put into E(T}).

7) A feature selection operation N, is constructed by using
F, as the operating expression and put into V(T,). Then, an
edge (N,, N,)is generated and put into E(T},).

8) A spatio-temporal selection N; is constructed by using
F as the operating expression and put into V(7). Then, an
edge (N,, N,)is generated and put into E(T}).

9) A structure selection N, is constructed by using F, as
the operating expression and put into V(7,). Then, an edge
(N5, Ny)is generated and put into E(T,).

10) A projection N, is constructed based on the SELECT
clause and put into V(7T,). Then, an edge (N,, N,)is gen-
erated and put into E(T,).

11) Return the UMQA query plan 7, =(V, E).

In algorithm 1, we omit the processing for other clauses
(e.g. , ORDER BY clause), and only give the plan con-
struction for a basic UMQL query statement. By using algo-
rithm 1, the query in example 1 is translated into the query
plan given as Fig. 1, where NO1 to NO9 respectively repre-
sent the following operations: g[ “m<«—MOVIE”], g[“d«
PERSON”], [I[*“d.id =m. dir”], n[“clip IN m. video.
clips AND horse(2), sun(1)IN clip. objects”], o™ [“d.
name = ‘ Ang Lee’ AND d. role =  director’”], ¢ [ “frame
(clip) > 55 AND is(horse, ‘horse’) AND is(sun, ‘sun’)
AND color( horse, ‘horse. bmp’) > 0.75 AND shape( sun,
‘sun. bmp’) > 0.75], o> [“horse BEFORE[ Y] sun”],
o[ “clip IN m. video. clips AND horse (2), sun(1) IN
clip. objects”], and 7r[ “d. name”] .

@-@-@-@-@

Fig. 1 Query plan produced by algorithm 1

2 Optimization for UMQA Plan

The logic optimization for a UMQA plan consists of two
parts, optimization strategies and translation formulae. In
the optimization of plans, we must abide by some transla-
tion formulae for maintaining the plans semantically correct.
If two plans E, and E, are equivalent, then they have the
same logical meanings; i.e., their implementations on the
same operand will output the same result. It can be noted as
E, =FE,. Based on the meanings of UMQA operators, a
complete set of equivalent translation formulae for UMQA is
given as follows:

m[AJ(E) =7[A 1 (w[A,](..(7[A,](E))..))

if Vi(l<isn-1-A,CA,,)) (D)
nlE, E,, ..., EJ(E)=qlE](n[E,](...(n[E,](E))...)
if Va(l<sa<n—VYb(l<b<a—V,(E)¢V.(E,)))
(2)
olF, N\... N\FJ(E)=c[F,1(..(c[F,](E))..)
ifo=(c", o™, oro™)
oIF,N...NFJ(E)=0"[F,]1(..{0™[F,](E))...),
if VaVb(l<a<b<sn—V,(F,)¢V.(F,))
(3)
ol F\1 (o' FLI(E)) =0'[ F,] (o[ F,]1(E))
if o, O_/Z(O_NL, O_SP, or O_FE)
I F1(alF,1(E)) =a[F,1(c[F,1(E))
if o =(o"", o, or ™), V.(F)NV(F,) =
aIF (™[ F1(E)) =™ [F,1(a"[F1(E)) =
o F, NF,1 (o™ [ F1(E)) if Vi(F,) =V.(F))
4)
n[F'1(a[F1(E)) =c[F1(n[F'1(E))
it =(o™ o o ™). V(P VR =B

n[Al (¢ [F1(E)) =0 [ F](n[A](E))
if VF(A) mVF(F) :®s VL(A) ﬂVL(F) ZQ



322 Wu Zongda, Cao Zhongsheng, Wang Yuanzhen, and Li Guiling

m[ANLFI(E)) =am[AJ({[F](m[A,, A](E)))

ift{=(n, o™, o, o, or ™) (6)
H{FI(E,, E,)=lIF](E,, E)) (7
HIF,1(II[F,\](E,, E,)), E))=I1I[F] -
(E,, II[F,]1(E,, E;)) (8)
ol FIUILF'I(E,, E,))=IIF'1(c[FI(E)), E,)

ol Fy NBIUIFI(E, E))=HF1(alF](E), U'[Fz](Ez))}

U'[F| /\FZJ(H[F’](EI’ Ez))EU[Fz](H[F’](U[FJ(EI)» Ez))
9
NlFIUILF](E,, E,))=IF1(nlFI(E), E,) }
7)[Fn Fz](H[F,](Ew Ez))EmFI](n[Fl](El)’ n[Fz](Ez))
(10)

w[A,, A,JUILFI(E,, E))=

HTFI(7[A(E), w[A,](E,)) (11)

Rules 1 to 3 are conjunctional laws. Rules 4 to 11 are ex-
changeable laws. Based on these translation formulae and
optimization strategies'” """, the optimization algorithm is
given as algorithm 2, where all the nodes are handled from
bottom to top. Because the choice for join order and join
method is established by the traditional optimization algo-
rithm, algorithm 2 concentrates on how to optimize the
placement for all selections in a plan. In the first step, com-
plex conjunctional operations are expanded to generate some
new operations. In the second step, these new operations
are pushed down as much as possible. In the third step, the
multimedia operation placement algorithm is used to move
up each selection to a suitable position of a query plan based
on the selectivity and unit execution costs of selection.

Algorithm 2  Optimization of a UMQA plan

Input: a plan produced by algorithm 1.

Output: a new plan after optimization.

1) Conjunctional complex operations are expanded.

a)Rule 2 is used to translate the structure expansion oper-
ation as

nlE, E,, ..., EJ(E)=n[E (nlE](...(n[E,](E))...))
Va(lsa<n—>Vb(l<sb<a—V (E)ZV.(E)))
b) Rule 3 is used to translate the normal selection, feature
selection and spatio-temporal selection operations as
olF,\... NF1(E)=al[F1(...(o[F,](E))..)
c)Rule 3 is used to translate the structure selection opera-
tion as
o IF,N... NFJ(E)=0"[F,1(.. {0 [F,](E))...)
VYa(lsa<n—Ybla<b<n—V. (E)ZV.(E,)))

2) Operations are pushed down.

a)Rule 10 is used to push each node which represents a
structure expansion operation down along the plan as far as
possible.

b)Rules 5 and 9 are used to push each node which repre-
sents normal, feature or spatio-temporal selection down
along the query plan as far as possible.

c)Rules 4, 5 and 9 are used to push each node which re-
presents a structure selection operation down along the query
plan as far as possible.

d)Rules 6 and 11 are used to push each node which repre-
sents a projection operation down along the plan as far as

possible.

3) For each node except one representing the join opera-
tion in the query plan, the multimedia operation placement
algorithm is used to push it up from root to leaf.

4)Rule 3 is used to combine the nodes which represent
the selection operations and adjoin each other with a node
representing a single selection whose condition is the con-
junction of each original selection’s condition.

5)Rule 1 is used to combine several projection operation
nodes which adjoin with each other to produce a new single
projection node. The conditional item of the new node is the
conjunction of the original projection operations.

6) Return the query plan after optimization.

For the UMQA plan in Fig. 1, its optimization by algo-
rithm 2 is shown as Fig. 2, where VOl to V16 respectively
represent the following operations: & [“m «— MOVIE™],
[ “m. dir, m. video”], II[“d.id =m. dir”’], &[“d«—PER-
SON”], [ “d. name, d.id”], o""[“d. name = ° Ang Lee’
AND d. role = “director’”], m[ “clip IN m. video. clips”],
o[ “frame( clip) > 5577, USE[“clip IN m. video. clips”],
nl “horse(2), sun(1)IN clip. objects”], o[ “is( horse,
‘horse’ ) AND color ( horse, ‘horse. bmp’) > 0.757],
o[ “is(sun, ‘sun’) AND shape ( sun, ‘sun. bmp’) >
0.75”], o*[“horse BEFORE[ Y] sun”], o[ “horse(2),
sun( 1) IN clip. objects”], o*[“clip IN m. video. clips
AND horse(2), sun (1) IN clip. objects”], and 7 [“d.
name”]. The evolvement of the node NO8 in Fig. 1, which
represents a conjunctional structure selection operation, is
taken as an example. In the first step of algorithm 2, NOS8 is
split into two nodes V09 and V10, and a new edge ( V14,
V09)is output. In the second step, the second formula of
rule 4 is used to push down the node V09 below the node
V14, generating a new node V15. However, in the third
step, all of them are pushed down below the join node VO03.
And the multimedia operation placement algorithm pushes
up the nodes V09, V14 and V15 below the node V03
again, because the join in the node V03 has very low selec-
tivity on the variable ‘m’(as the movies directed by ‘ Ang
Lee’ are few). In other words, the earlier implementation
of VO3 can reduce the input size of its subsequent selection
operations and the total execution costs.

@-O-®
©-©-@-0-0-0-®
- AONDNONCHD

Fig.2 Query plan optimized by algorithm 2

3 Logical Implementation for UMQA Plan

In this section, we discuss how to implement a UMQA
plan so as to obtain target data from a multimedia database.
In such a process, an essential data structure is a query gen-
eration graph which is used to specify the intermediate re-
sults for implementing a query plan.

Definition 2 A query generation graph G =(V, E) con-



Processing and optimization of UMQL-based multimedia queries

323

sists of V(G), a nonempty set of vertices, and E(G), a set
of ordered pairs of distinct elements of V(G).

1) Each ordered edge (u, v)of E(G) represents an ances-
tor-child relationship between two variables denoted by the
vertices u and v, and V (u’, v) Y (u, v)((u', v') e EN
(u, vy eENu' =u—v' =v).

2)Each vertex u of V(G) represents a variable comprising
a three-tuple form (N, O, R), where u[ N] denotes the
name of the variable, u[ O] is a set of objects of the same
data type bound to the variable, and u[ R] is a set of ordered
pairs of OIDs and used to point out the immediate ancestor
object for each object in u[ O], satisfying

Y (x, »((x, y) eu[R]—>xe &u[O] Nye &v[O])
if 3(u, v) e E(G) }
Y (x, y)((x, ¥) eu[R]—xe &u[O] \y=0) otherwise

where &a represents the OID of a if a is a content object; or
else it represents a collection of OIDs, each denoting an ob-
ject in a, if a is a collection of content objects.

Definition 3 P and O are the domain of path expres-
sions and the domain of objects, respectively. If JCDCO
x P, then the mapping f: D—2° is an expansion function.
When 0 O and p e P, f(o, p) is a collection comprising
all objects and the object o can be reached along the path
expression p.

Definition4 If ((JCDC2°) A Vd(deD—>VYaV
b(a, bed— t(a) =1(b))), Ye(eec E—|V(e)|=1),
then the mapping g: D x E—D is a monadic selection func-
tion. Here the function ¢ is used to evaluate the data type of
an object and E is a set of basic conditional items for nor-
mal, feature or spatio-temporal selection. When d € D and e
e E, g(d, e) represents a collection of objects satisfying
the basic conditional item e in the objects’ collection d. Ob-
viously, g(d, e) Cd.

Definition 5 If JCDC2° x2° AV (x, y)((x, ¥)
D—YaVb(aex/\bey—t(a) =t(b))), Ve(ec E—
| V(e) | =2), then the mapping h: D x (N xN) x E—D is
a binary selection function. Here E is a set of basic condi-
tional items for feature selection or spatio-temporal selec-
tion, and N is a set of natural numbers. Whende D Aeec E
AN(n, m) e NxNANd=(x, y) N e=P(x, y), h(d, (n,
m), e) =(x', y'), where P is a binary selection predicate,
and Ya(aex'—>de (e, ey ANP(e, a)) N Je,(e, ey N\
P(e,, ) A...A Je,(e,eyNP(e,, @))) A Val(aey —
d e (e, exNP(e, a)) N A e,(e,ex\P(e,, a)) N... A\
J e, (e, ex\P(e,, a))).

Definition 6 If (JCDC2° x2° AV (x, y)((x, y) eD
—YaVb(a, bex—t(a) =t(b)) NVaV¥b(a, bey—
t(b))), Veleec E—~ \ V(e) \ =2), then the mapping z: D
x E—2°*° is a join function, where E is a set of basic join
items. WhendeDAeeEANd=(x, y) \ e=P(x, y),

«d, ¢) ={ablacx\beyA\P(a, b))}, where P is a basic
join binary predicate.

Based on the above definitions, the implementation algo-
rithm of a UMQA plan can be put forward as follows:

Algorithm 3 Implementation of a UMQA plan

Input: a UMQA plan.

Output: a query generation graph G(V, E).

1) V(G)«—{}, E(G)«{}. A post-order traverse is made

for the plan and for each vertex.

2)If a scan g[ “d«—D”] is represented, then an object set
O of the same type “D” is obtained from a multimedia data-
base. A vertex(“d”, O, {(&a, 0) |ae O})is generated
and added into V(G).

3) If a structure expansion operation is represented, then
for each basic conditional item e = “d,(a,), d,(a,), ...,
d,(a,)IN d. s, s,. ...s,”, the following three steps are

taken.

a) n vertices are generated and named as d,, d,, ..., d,,
where d.[ O] <, d.[R] < (). Then they are put into
V(G).

b) A set of objects d[ O] is obtained from the vertex d.

c¢) For each object o of d[ O], call f(o, e) to obtain a set
of child objects, Q. If Q | =(a, +a, + ... + a,), then
d[0]<—d,[0]1UQ and d,[R] «d,[R] U{(&a, &o) lae

oNi=1, 2, ..., n).
d) n edges (d,, d), ..., (d,, d)are generated and put
into E(G).

4)If a normal, feature or spatio-temporal selection is re-
presented, then for a basic conditional item e of the opera-
tion, the following two steps are taken.

a)If [ V(e) | =1 and V(e) = {d}, a set of objects d[ O] is
obtained from the vertex d. Then for each a € d[ O] -
g(d[ O], e), call procedure update (d, a).

b)If | V(e)| =2 and V(e) = {d,, d,}, two sets of ob-
jects d,[ O] and d,[ O] are obtained from the vertex d, and
d,, respectively. Call h((d,[O], 4,[0]), (N (d,),
N(d,)), e) and return (O,, O,). Then for each a e d,[ O]
- 0,, call update(d,, a), and for each b e d,[ O] - O,,
call update(d,, b).

5) If a structure selection operation is represented, then
for each basic conditional item, e =“d,(a,), d,(a,), ...,
d,(a,) IN d. s,. s,. ...s,”7, the following two steps are
taken.

a) A set of objects d[ O] is obtained from the vertex d.

b) For each o of d[ O], some sets of objects O,, O,, ...,
O, are obtained from the vertices d,, d,, ..., d,, where O,
={a| Jd(de d,[R] Nd[x] = & Nd[y] = &o)}. If
\0,. | < a,, call update(d, o).

6) If the projection or join operation is represented, then it
is processed similarly with the relational algebra processing.

Procedure update( v, o0):

If o ev[ O], then (1)remove o from v[ O]; (2)for each
rev[R], if r[x] = &o, then r is removed from v[R]; (3)
if 3v'(v' eVA <V, v> ekE), then for each(&a, &b) e
v'[R] and b =0, call update(v’, a).

In a UMQA query plan, scan and structure expansion are
used to initialize a query generation graph. Normal selec-
tion, structure selection, feature selection, and spatio-tem-
poral selection are used to cut the tips of branches. Join is
used to reconstruct the query generation graph. Then, the
projection operation as the root is used to construct and out-
put the query results.

Example 2 For a scan operation g[ “m«MOVIE”] ()
given in Fig. 3, the output is shown as Fig. 4(a). For a
structure expansion n[ “clip(1) IN m. video. clips”’] (G, ),
the output is shown as Fig. 4(b), where G, is a query gen-
eration produced by the previous scan operation.




Wu Zongda, Cao Zhongsheng, Wang Yuanzhen, and Li Guiling

324
MOVIE OBJECT
oid | name | dir | video.clips oid | name type
M1 |‘moviel’| P1 |{C1, C2, C3} 001 | ‘objectl’ | ‘horse’
M2 |‘movie2’| P1 {C4, Cs} 002 | ‘object2’ | ‘horse’
M3 |‘movie3’| P1 {C6} 003 | ‘object3” | ‘sun’
M4 |‘movie4’| P1 {} 004 | ‘object4’ | ‘horse’
005 | ‘object5’ | ‘horse’
CLIP TR B
oid | name objects 006 obj.ectG Sun
C1 | “clipl” |{O1, 02, 03} 007 ‘objlect7’ ‘cattle’
C2 | “clip2 |{0%, 05, 06} 008 | ‘object8” | “sheep’
- 009 | ‘object9’ | ‘horse’
C3 | “clip3’ {07}
- 010 | ‘object10’| ‘grass’
C4 | “clip4’ {08}
C5 | ‘clip5’ {09} PERSON
C6 | ‘clip6’ {010} oid name role
C7 | ‘clip7’ {} P1 | ‘Ang Lee’ | ‘director’
P2 ‘John” ‘player’
P3 ‘Tom’ ‘player’
P4 | ‘Steven’ | ‘adaptor’
Fig. 3 Scheme of all objects in system
viIN] = “m” viIN] = “m” nIN] ="m”
o] | wmiR] viol | wiR) viol | wiR)
‘moviel’ | (M1, 0) ‘moviel’ | (M1, 0) ‘moviel” | (M1, 0)
‘movie2’ | (M3, 0) ‘movie2’ | (M3, 0) ‘movie2’ | (M3, 0)
‘movie3” | (M3, 0) ‘movie3” | (M3, 0) ‘movie3’ | (M3, 0)
‘movie4’ | (M4, 0) ‘movied’ | (M4, 0) ‘movied’ | (M4, 0)
(a) v,[N] = “clip” w[N] = “clip”
(0] va[R] v2[0] v2[R]
‘clipl” | (C1, MI1) ‘clipl’ | (C1, MI)
‘clip2’ | (C2, M1) ‘clip2’ | (C2,M1)
MIN] = “m” “clip3’ | (C3, M1) “clip3’ | (C3, M1)
v1[0] vi[R] ‘clipd” | (C4, M2) ‘clipd” | (C4, M2)
‘moviel” | (M1, 0) ‘clip5” | (C5,M2) (c)
‘movie2’ | (M3, 0) ‘clip6’ | (C6, M3)
‘movie3’ | (M3, 0) (b)
‘movied” | (M4, 0)
W[N] =“m” vi[N]= “md”
v[N] = “clip” vi[0] vi[R] vi[0] vi[R]
v[0] [R] ‘moviel” | (M1, 0) ‘moviel’ | (MD1, 0)
‘clipl” | (C1, M1)
“lip2 | (C2, M1) v[N] = “clip” vo[N] = “clip”
‘clip3> | (C3, M1) v2[0] v2[R] v2[0] v2[R]
‘clipd’ | (C4, M2) ‘clipl” | (C1, Ml) ‘clipl” |(C1, MD1)
v3[N] = “horse” v3[N]= “horse” v3[N] = “horse”
vs[O] v3[R] v3[O] v3[R] v3[O] v3[R]
‘objectl” | (O1,Cl1) ‘objectl” | (O1, Cl) ‘objectl” | (O1,C1)
‘object2’ | (02, C1) ‘object2’ | (02, Cl) ‘object2’ | (02, C1)
v[N] = “sun” v4[N] = “sun” v4[N]= “sun”
w0l | vilR] w[o] | wilR] wo] | wiR]
‘object3” | (03, C1) ‘object3’ | (03, Cl1) ‘object3” | (03, C1)
(d) (e) (£
Fig. 4 Implementation results of UMQA operations. (a) G,

=(Ve (v}, Ef{D; (b) Gy =(V: {vi, vy} E{(vy, vi) D (©)
G3:(V: {Vu Vz}, E:{(Vza V])})§ (d) G4 =(V: {Vlv Va, V3,
vl Ex{(vy, vi)y (vg, v), (v3, v5) 1)) (e) Gs =(V: {vy, v,,

V3,

Vo, V3, ek E{(vy, vi), (v, v2), (v3, v) )

val, Ex{(vy, vi), (vg, v), (v3, )P (f) Gy =(V: {v,

Example 3 For a feature selection with only one varia-
ble o[ “frame(clip) > 55”1(G,), if only frame(clipl’)
> 55, frame( ‘clip2’) > 55, frame( ‘clip3’) > 55, and
frame( ‘ clip4’) > 55, the output is shown as Fig. 4(c). For
a spatio-temporal selection with two variables ¢ [ “horse
BEFORE[ Y] sun”] (¢ [“horse(2), sun(1)IN clip. ob-
jects”]1(G,)), if there are only ‘objectl’, ‘object2’, ‘ob-
ject3’ and ‘objectd’ satisfying ‘object]” BEFORE[ Y] ‘ob-
ject3’ and ‘ object2” BEFORE[ Y] ‘object3’, the output is
shown as Fig. 4(d).

Example 4 For the structure selection operations
o[ “clip(1) IN m. video. clips”] ( o> [“horse(2), sun(1)
IN clip. objects”] (G,) ), the output is shown as Fig. 4(e).
For the join [I[ “m. dir =d. id”](G,, e[ “d«-PERSON"]),
the output is shown as Fig. 4(f).

4 Conclusion

In this paper, some UMQL-based multimedia query pro-
cessing techniques are given, including the translation of a
UMQL into an operator-based language UMQA, the optimi-
zation of UMQA plans, and the implementation of UMQA
plans. These techniques are implemented into a UMQL
prototype information system which runs on Windows XP or
Windows NT and is developed by using Visual C++ and
Visual Basic 6. 0 for its server and clients, respectively. The
prototype system is built on a client-server framework, in-
cluding a system server, many clients, and socket applica-
tion program interfaces used to link the server and clients,

as shown in Fig. 5.
| ¥ UMOQL query
Visual Syntactic check
environment

Multimedia
database
;
L 2 s
ST B ; Algebraic translation
El |g| Bae
£ 8 2 | schema
& = =
8 A4 8
a =
Interpret % Physical optimization

\_

Query plan tree

Fig. 5 Framework of UMQL prototype system

However, the crucial problems of UMQA operator imple-
mentations that exhibit an important influence on the effi-
ciency of implementation are described in the form of some
functions. The effectual implementations for these functions
will be discussed in future work. And, due to space con-
straints, the performance test report of the algorithms is not
given in this paper, which is also future work.



Processing and optimization of UMQL-based multimedia queries

325

References

[1] Cao Zhongsheng, Wu Zongda, Wang Yuanzhen. UMQL: a
unified multimedia query language[ C]//IEEE/ACM Confer-
ence on Signal Image Technology and Internet Based Sys-
tems. Shanghai, China, 2007: 101 —107.

[2] Wu Zongda, Cao Zhongsheng, Wang Yuanzhen. Design
and implementation of visual multimedia query language[J] .
Journal of Huazhong University of Science and Technology
( Nature Science), 2008, 36(7): 45 —56. (in Chinese)

[3] Cao Zhongsheng, Wu Zongda, Wang Yuanzhen. A gram-
mar analysis model for UMQL[J]. Journal of Electronic Sci-
ence and Technology of China, 2008, 6(3): 317 —323.

[4] Wu Zongda, Cao Zhongsheng, Wang Yuanzhen. UMQA:
an internal algebra for querying multimedia contents[J]. In-
formation Technology Journal, 2009, 8(4): 411 —426.

[5] Hsu C, Knoblock C. Semantic query optimization for query
plans of heterogeneous multidatabase systems [J]. [EEE

Transactions on Knowledge and Data Engineering, 2000, 12
(6): 959 —979.

[6] Gadia S K. Algebraic identities and query optimization in a
parametric model for relational temporal databases[J]. [EEE
Transactions on Knowledge and Data Engineering, 1998, 10
(5): 793 —808.

[7] Grant J, Gryz J, Minker J. Logic-based query optimization
for object databases|[J]. IEEE Transactions on Knowledge
and Data Engineering, 2000, 12(4): 529 —548.

[8] Lee C, Chen C. Query optimization in multidatabase sys-
tems considering schema conflicts[J]. [EEE Transactions on
Knowledge and Data Engineering, 1997, 9(6): 941 —956.

[9] Smith J M, Chang P Y T. Optimizing the performance of a
relational algebra database interface[J]. Communications of
the ACM, 1975, 18(10): 568 —579.

[10] Aho A V, Sagiv T, Jullman J D. Efficient optimization of a
class of relational expressions[J]. ACM Transactions on Da-
tabase System, 1979, 4(4): 423 —446.

UMQL Z A& py A B AL

x % & &It

Iy FiH

(P HBERFHINMAFESHERFR, KX 430074)

W= @ H UMQL &9 69 & £ 4 Xt 4 UMQA 9 3 B AR SEF, % i 2k UMQL % 444k & 14 2] UMQA

Fin it X695
iR PATRA, BT F

ki, AEE UMQL &9 & s 5 e A3 UMQA it x]. %5, A T A HA-E UMQA
- UMQA A2 % AL Fo — L AL AL K%, % UMQA 1 37 3+ X o9 4k S

BB EATHFMAN T AL UMQA &4t X, MLz eg it XA TaRA SRS, &5, Wik T
UMQA %383+ ] 09 32 8 347 7 %, BF UMQA R ECH T 893 8 AT 7 i, VRN S BRI B F SR BUR P R S%
Ay BAREHE. XL EHE—ANAUMQL RA 2%+ %I, Bp AR AN LEEHLBE R IETIT
KB : FUAHIEE; K E0ET; FiL1L; UMQL

hE4E S TP311.134.3



