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Abstract: To realize automatic modeling and dynamic simulation
of the educational assembling-type robot with open structure, a
general dynamic model for the educational assembling-type robot
and a fast simulation algorithm are put forward. First, the
educational robot system is abstracted to a multibody system and
a general dynamic model of the educational robot is constructed
by the Newton-Euler method. Then the dynamic model is
simplified by a combination of components with fixed
connections according to the structural characteristics of the
educational robot. Secondly, in order to obtain a high efficiency
simulation algorithm, based on the sparse matrix technique, the
augmentation algorithm and the direct projective constraint
stabilization algorithm are improved. Finally, a numerical
example is given. The results show that the model and the fast
algorithm are valid and effective. This study lays a dynamic
foundation for realizing the simulation platform of the educational
robot.
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he educational assembling-type robot is a special type
Tof robot used in the field of education for training
students’ creativity. It has numerous basic mechanical and
control components with simple connecting modes. By freely
assembling these components, students are able to set up ro-
bots with different structures and functions to accomplish
some tasks. As a result, their creativity will be trained and
enhanced.

In recent years, the educational robot has attracted increas-
ing attention, and it has been explored and studied by many
companies and researchers' ™ . However, these existing prod-
ucts have many disadvantages such as high price, poor relat-
ed software, low degree of standardization, and difficult ma-
intenance. In order to overcome the above shortcomings and
enrich product software, a simulation platform of the educa-
tional robot with visual design, simulation and animation is
innovatively proposed based on robot simulation technology
and modern manufacturing technology. This platform not
only avoids the disadvantages of the existing educational ro-
bots, but also provides a new environment for creative de-
sign. In this paper, a general dynamic model of the educa-
tional robot and its fast simulation algorithm are studied in
order to realize the above simulation platform.
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1 Establishment of the General Model

The educational assembling-type robot can be freely as-
sembled according to students’ imagination, so it has an un-
fixable topological structure. In order to search for a general
modeling method, the robot with N components is abstracted
to a multibody system whose topological structure is shown
in Fig. 1. The reference coordinates of the robot system are
first established and the centroid of the body is used as the
center of body reference coordinates.

y O Mechanical components ; |:| Control components

Fig.1 Topological structure of the educational robot

The generalized coordinates of the body are Cartesian co-
ordinates for position and Euler parameters for orientation,
i.e.,

qi:[ri p‘] i=1,2,...,N

where r, = {x,,y,,z,} and p, = {e,, ¢, €,, €5 }; x;, ¥;, 7, and
€y, €,, €,, €, are the Cartesian coordinates and Euler param-
eters of each body, respectively. For each body, Newton-Eul-
er dynamic equations with a matrix form are established"” as

[n(;i 4GJG [ ] [ ] [SGJGp]

where m, is the constant diagonal mass matrix; J, is the con-
stant diagonal inertia matrix; F; and L} are the vectors of ap-
plied force and applied torque, respectively; F; and L are
the vectors of constraint force and constraint torque, respec-

tively.
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Let N, denote the number of joints in the educational ro-
bot model and d, represent the number of constraint equa-
tions induced by joint k. Without loss of generality, these
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N!

constraints are considered to be holonomic. Letd = Z d,,
k=1

and then kinematic constraints can be written as

d(r.p.t) =l &, #," =0 (2)

Introducing d Lagrange multipliers A, according to the
ideal constraint conditions™ , we can obtain

F'=-¢A, L'=-¢,\

where ¢@,, ¢, are corresponding Jacobian matrices. Then the
dynamic equation of the whole system with the Lagrange
multiplier is obtained as

0 17F . [P ‘ 0
[’(1)1 4GTJG][1";']+[¢:]A:[Z“]_[SGTJGI;'] 3)

Egs. (2)and (3)are used as general models of the educa-
tional robot. The simplified form of Eq. (3)is written as

Mg +$,A=0Q (4)

2 Simplification of General Model

The established dynamics model should be as simple as
possible for simulation speed. In the educational robot, there
are some components with fixed connections which have no
relative motions, so they can be considered as one body. In
this way, the dynamic model can be simplified by reducing
the number of components. In regard to N; components con-
nected by fixed connections, the total mass m_ after combi-
nation is the accumulation of the mass of each body, i.e.,

Nl
m, = z m,
i=1
The centroid coordinates are computed by

N N
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Since the inertia matrix of each body is referenced to its
own reference coordinates, the total inertia matrix is not the
simple sum of each inertia matrix. The inertia matrix should
be transformed to a common reference coordinate and then
be computed. For this reason, we take the centroid of the
combination body as an origin to build a reference coordi-
nate parallel to the main reference coordinate. p; is defined
as a position relative to the centroid of the combination body
and A ; as the relative direction cosine matrix(i e N;) . Inertia
matrix J, referenced to the reference coordinate of the com-
bination body can be obtained by the following steps:

Stepl J:=A.JA_;

Step2 J,=J + (chipciE _pcip'cri)mi'

These steps are repeated until the inertia matrix of every
body is transformed into a common reference coordinate.
Then the total inertia matrix J. of the combination is ob-

tained by accumulation as follows:

Usually, the obtained inertia matrix is not the main inertia
matrix, so the principal axis of inertia and the main inertia
matrix are recalculated by solving the eigenvalue equation of

. . .12
the inertia matrix'”’.

3 Fast Simulation Algorithm for Educational Ro-
bot

3.1 Traditional augmentation algorithm

To solve the above differential algebraic equations (2)
and (4), various numerical algorithms have been developed
in recent years'®. Among them, the augmentation algorithm
is so simple and easy to program that high usage frequency
is obtained in computer simulation. In the traditional aug-
mentation algorithm, the Lagrange multiplier is usually
solved by the following equation:

dSM ' Py A=(pM Q- (,4),4-2b,4) (5

After obtaining the Lagrange multiplier, dynamic equa-
tions are transformed into the easily solved ordinary differ-
ential equations:

[51= oo - gn)] ©

Egs. (5) and(6) are used for obtaining the state of multi-
body in dynamic simulation.

3.2 Sparse resolution of augmentation algorithm

Although the traditional augmentation algorithm is widely

applied in dynamic simulations, it has the disadvantages of
low computational efficiency and large constraint violation.
So it is essential to improve the traditional algorithm to sat-
isfy the demands of computational speed and accuracy for
educational robot simulation. Then, solving equations of the
Lagrange multiplier in the augmentation algorithm can be
modified into the following equation'” :
M b, 1dy_10 7
&, 0“A]_[r] 7
where 7= - (¢,4) ,4 —2¢,4. In contrast with Eq. (5), the
improved equation, whose coefficient matrix has advantages
of high degree of sparse and low effects of topology struc-
ture, can be solved by the sparse matrix technique.

In order to solve Eq. (7) by the sparse matrix technique,
first, the coefficient matrix is reordered for computational ef-
ficiency. It is known that a sparse matrix has one-to-one cor-
respondence with the undirected graph, so the ordering algo-
rithm of the undirected graph can be used to reorder the cor-
responding sparse matrix. A modified reverse Cuthill-McKee
algorithm(RCM) '™ is applied in this paper. As an example,
the coefficient matrix of Eq. (7) has the following form:
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After reordering by the modified RCM algorithm, we obtain the following matrix:
rms o s q
b 0 P
i m, ¢y
d 0 o
&y m,
o 0 o, 0
o, m, @,
b 0 oy
¢y m,
J 5 ZsT
o 0 P
w ol
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L A A

Secondly, LDL" symbol decomposition is applied to the
matrix after reordering. The symbol decomposition is con-
sidered as a virtual decomposition, because it only records
the positions of filling elements and elimination elements.
By this decomposition, the position of elements is con-
firmed and the optimal data structure for LDL" decomposi-
tion is built.

Finally, the numerical resolution of Eq. (7)1is carried out,
which includes numerical LDL" decomposition of the coef-
ficient matrix and the back-substitution solution. Numerical
decomposition is a numerical computation of specific ele-
ments according to the data structure after symbol decom-

position, and then back substitution is applied to yield the
resolution of the equation.

The whole process of solving Eq. (7) can be summarized
as follows:

Step 1  Establish a corresponding undirected graph of
the coefficient matrix, G =(V, E).

Step 2 Order graph G by the improved RCM algorithm
and confirm the optimal matrix structure.

Step 3  Apply symbol LDL" decomposition to the ma-
trix after reordering. According to the obtained matrix struc-
ture, take out the major operated rows/major columns and
the eliminated rows/columns, and then use the correspond-
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ing elements of the major rows/major columns to eliminate
elements of eliminated rows/columns. The positions of
modified elements are confirmed and recorded in turn.

Step 4 Repeat step 3 until decomposition ends.

Step 5 Do numerical LDL" decomposition.

Step 6 Solve the equation by back substitution.

In the dynamic simulation, Eq. (7) needs to be solved for
A at each time step, which occupies a large number of
computations. However, with regard to the educational robot
without variable constraints, the structure of the coefficient
matrix of Eq. (7) is unchangeable; consequently, steps 1 to
4 can be put outside the simulation cycle as simulation pre-
processing, while steps 5 and 6 are put into the simulation
cycle for computation. In this way, the process of solving A
only becomes a series of arithmetic operations in the simu-
lation cycle and thus computational efficiency is improved.

3.3 Sparse resolution of direct constraint stabilization

Constraint violations inevitably exist in the augmentation
algorithm and they must be stabilized for accuracy require-
ments of simulation. In general, the indirect methods, es-
pecially Baumgarte’s stabilization method, are used to sta-
bilize violations'' although they have disadvantages of low
accuracy and difficult selection of stabilization parameters.
Compared with indirect methods, the direct violation cor-
rection methods have higher computer accuracy but lower
computational efficiency. If the computation cost of the di-
rect methods can be decreased, the direct methods should
have better simulation effect. In this paper, direct projec-
tive stabilization equations are constructed and solved by
the optimal data structure in preprocessing of simulations so
as to save the computational cost.

After n integration steps, a numerical solution of position
q, is obtained. Usually, there is a small error making the
constraint ¢p(g,) #0. Let the exact solution be ¢, and the
error be Ag,. To satisfy the position constraints, the numeri-
cal solution can be projected to the manifold defined as
&(g) = 0 by solving the following minimization prob-
lem"":

min [l g, -q, |,  with ¢(q,) =0
q,€
where || x|, = vx Mx and M is a positive definite gen-
eralized mass matrix.

To solve the minimization problem, the constraints are
coupled to the target function by the Lagrange parameter u.

It gives the necessary conditions for a minimum:
M(q,-q,) +¢,(q)pn =0 (8a)
o(q,) =0 (8b)

The above equations can be linearized to produce

M $,(q,)]1A,
b(q) 0 ][Mq]

_ 0

ol —¢(a,,)] ©)

Likewise, the error in the velocity constraints can be cor-

rected in a similar way by projection of the velocity ¢, onto

the manifold defined by ¢(g,) =0:

inlllll‘ || qu _&n || M Wlth ¢( q;z)ql1 :0
This minimization problem is solved by the following
linear equation:

= (10)

M ¢,(q,)][Ad,
é,(q,) 0 ][n]

—é(qn,z}n)]

where 5 is the Lagrange parameter and A4, is the error of
velocity. Normally, Eq. (9) needs to be solved by a Newton-
like iterative method. In order to improve computer efficien-
cy, we need not use an iterative method in applications. So
the limited number of Newton steps can only be performed
to reduce the errors in the constraints. Practical experience
shows that only one step of the Newton iteration for the
projection of the position is sufficient for stabilization. Ref.
[11] gives a rigorous proof that this strategy guarantees that
the error in the constraints remains limited for arbitrary time
intervals and the upper bound is

max ||p(q,,, t,) |l<Ch’

where the constant C is independent of 4 and . A compari-
son between an iterative projection method to avoid the
drift-off and a noniterative projection method to avoid the
drift-off is outlined in Fig. 2.

e ,
$(g)=e" .
#(g:) =0 -

» e B BE
st(qi)=() i

Fig.2 Comparison of two stabilization methods. (a) Iterative
projection method; (b) Noniterative projection method

Comparing Eqs. (9) and(10) with Eq. (7), we can find
that they have the same coefficient matrix structure, so the
sparse matrix computer technique is used for obtaining sta-
bilization values again. Finally, the stabilized position and
velocity are computed as

q,=9q,+Aq,
4,=4,+Aq,

3.4 Summary of simulation algorithm

The direct augmentation algorithm and projective con-
straint stabilization by the sparse matrix computer tech-
nique, together with the mature ODE integration method,
constitute a complete simulation algorithm. The flowchart of
the educational robot simulation is summarized in Fig. 3.

In the improved algorithm, solving Lagrange multipliers
requires a computational complexity of about O (2m) at
each step instead of about O(m’) in the traditional algo-
rithm where m is the number of constraints. Moreover, pro-
jective stabilization totally requires a computational com-
plexity of 2 x O(2m) by the sparse matrix technique. This
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Fig.3 Simulation flowchart

shows that the improved algorithm, whose computational
complexity is linear with the number of constraints, is supe-
rior to the traditional algorithm in computational speed.

4 Examples of Dynamic Simulation

In order to verify the improved algorithm and its stabili-
zation, as shown in Fig. 4, there is a manipulator with com-
ponents. Parameters of each body are as follows: [, =1, =1,
=1,=0,=0.2m,[, =0.08 m, [, =0.02 m, I, =, =0.06
m, m, =m, =m, =m, =m, =0. 1 kg, m; =m, =0. 03 kg, m,
=0.01 kg, my =0. 04 kg. The inertia matrix of each body
is computed according to shape, quality and body coordi-
nates. The generalized coordinates of the system are defined
as

qi={x,‘syi’p,'}T l=1s25- ,9
9 7 3
8 6 4

Fig.4 Structural sketch of manipulator

Based on general modeling methods and the simplified
method, the dynamic model of the manipulator is built. The
traditional augmentation algorithm and the improved algo-
rithm are programmed to simulate the manipulator in Mat-
lab where the correction coefficients of Baumgarte’s stabili-
zation are set at « =8 =30. An explicit Newton integration
algorithm is used for the ODE integrator whose time step is
fixed as h =10 ms.

An initial condition of the simulation which satisfies po-
sition and velocity constraints is given, while applied torque
in the crank is 1 N - mm. After simulation, the tip-position
of the manipulator (x,) is shown in Fig. 5; constraints vio-
lations of the position and the velocity of the two algo-
rithms are contrasted in Figs. 6 and 7, respectively. In the

computer whose CPU is 2. 8 GHz and memory is 1 GB to
simulate a cycle of 10” times, the CPU occupancy time of
the two algorithms is shown in Tab. 1.
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Fig.5 Tip-position of manipulator
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Fig. 6 Position constraint error of two algorithms
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Fig.7 Velocity constraint error of two algorithms

Tab.1 CPU occupancy time of two algorithms

Algorithm Step time/ms  Cycle number Occupancy time/s
Traditional 1 10° 16. 870
Improved 1 10° 15.014 7

As can be seen from Figs. 6 and 7, the improved algo-
rithm is far higher in computation accuracy than the tradi-
tional algorithm. In CPU cost, the improved algorithm is al-
so lower than the traditional algorithm as shown in Tab. 1.
This shows that the improved algorithm is efficient.

5 Conclusion

In this paper, the general dynamic model of the educa-
tional assembling-type robot is established and simplified
according to the structural characteristics of educational ro-
bots. Subsequently, a high efficiency simulation algorithm is
given based on the sparse matrix technique. It is concluded
that the improved algorithm has better accuracy and higher
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speed compared with the traditional augmentation algo-
rithm. As for future work, it will be interesting to conduct
studies on the numerical algorithms of educational robots
with contact and friction.
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