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Abstract: Aiming at the problems of bispectral analysis when
applied to machinery fault diagnosis, a machinery fault feature
extraction method based on sparseness-controlled non-negative
tensor factorization ( SNTF) is proposed. First, a non-negative
tensor factorization ( NTF) algorithm is improved by imposing
sparseness constraints on it. Secondly, the bispectral images of
mechanical signals are obtained and stacked to form a third-order
tensor. Thirdly, the improved algorithm is used to extract
features, which are represented by a series of basis images from
this tensor. Finally, coefficients indicating these basis images’
weights in constituting original bispectral images are calculated
for fault classification. Experiments on fault diagnosis of
gearboxes show that the extracted features can not only reveal
some nonlinear characteristics of the system, but also have
intuitive meanings with regard to fault characteristic frequencies.
These features provide great convenience for the interpretation of
the relationships between machinery faults and corresponding
bispectra.
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n machinery fault diagnosis, conventional analytical

methods, such as the power spectrum, cannot effectively
extract nonlinear fault features'''. Besides, these methods
lose phase information among frequencies and are not suit-
able for handling non-minimum phase systems or non-
Gaussian signals'”'. Therefore, higher-order spectral analysis
(HOSA) is usually used to extract and analyze the fault fea-
tures of mechanical systems because a higher-order cumulant
is not sensitive to additive Gaussian noise and symmetric
non-Gaussian noise, and a higher-order spectrum can detect
the phase coupling phenomenon'” in signals. However, since
the relationship between fault characteristic frequencies and
higher-order spectra is less interpretable than that between
fault characteristic frequencies and the second-order statisti-
cal quantities such as power spectra, traditional feature ex-
traction methods still predominate over other methods in the
practice of machinery fault diagnosis. In this paper we are
concerned with bispectra, which is a simple case of higher-
order spectra.

Non-negative tensor factorization ( NTF) can compress
and generalize large-scale high-dimensional data by factori-
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zing them into a low-dimensional space and then extracting
features from them. In 2001, Welling et al. ' first proposed
an algorithm for positive tensor factorization( PTF) and con-
cluded that factors are easier to interpret than those produced
by methods based on the singular value decomposition
(SVD). In the following years, many other researchers also
developed different NTF algorithms and applied them to va-
rious fields”™® . In NTF, high-dimensional data, such as an
image cube, are factorized directly and approximated by the
sum of rank-1 non-negative tensors'”'. Besides, NTF pro-
vides a unique factorization and its resulting “factors” are
both sparse and separable''”’. This paper proposes a novel
method using sparseness-controlled NTF ( SNTF) to extract
features from the bispectra of machinery fault signals.

1 Sparseness-Controlled NTF(SNTF)

The tensor factorization model for a third-order tensor G
of dimensions d, x d, x d, can be expressed as

k
G=>Yuo-vVow +E (1)
j=1
where u’, v/, w’ are the Jj-th column of matrices u, v, w(u e
R,y e R*, w e R™), respectively; “ o” is a notation
for the outer product of vectors, and E represents reconstruc-
tion or approximation error.

A typical NTF problem can be described as follows: Giv-
en a non-negative third-order tensor G, find proper non-
negative matrices u, v, w(u e R7**, v e R2*, w e R%*) to
minimize reconstruction error E in Eq. (1). To achieve this
goal, consider solving the following least-squares problem:

(2)
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w, v, w

k
G—Zu’ov’ow’
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F
s. t. w, v, w=0 (3)

where || A || ; stands for the Frobenius norm, i. e. , the sum
of squares of all the tensor elements A, ..

Based on the gradient descent scheme, Hazan et a
proposed an update rule for u, v, w:
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where u”, v", w" are the m-th column of matrices u, v, w, re-
spectively. Although this rule provides a unique factorization
under weak constraints ( There are only non-negativity con-
straints; see Eq. (3)), the sparseness of the factorization re-
sults cannot be controlled. So it is possible that the extracted
features are not so sparse that they cannot reflect the local
characteristics of original data( such as the data of an image
cube) . This drawback brings difficulty to the explanation of
those extracted results.

Heiler et al. """ proposed an approach based on the sec-
ond-order cone programming ( SOCP) to achieve precise
sparseness control of NTF results. In this approach, sparse-
ness control is converted into a conic optimization problem
with the second-order conic constraints. Consider the sparse-
ness control of u in Eq. (2):

max z (5)

s.t. flG,u) <f(G,u") (6)

z<sp(u™) +{V spu™y,u —u"') j=1,2,...k
(7)

where #’ is the Jj-th column of u, and u */ is the estimate of u’
before sparseness optimization; f( G, u) = || vec(G) -

Uvec(u) | is the cost function or the reconstruction error
function; vec(G) is the vector form of tensor G, and U is a
sparse matrix containing two matrices except #; and sp(x) is
vector x’s sparseness measure, which was indicated in Ref.
[11]. Nonetheless, this algorithm can optimize only one ma-
trix in one iteration step, so the algorithm efficiency is not
high.

In this paper, a sparseness-controlled algorithm for NTF is
proposed by combining the advantages of the aforemen-
tioned algorithms. The algorithm is shown in algorithm 1(u,
v, w are denoted as ¢, t,, t, for the sake of convenience),
where S, is the smallest sparseness of the columns in ¢;; S,
is the lower bound of a desired sparseness; C,, and C,, are

the reconstruction errors of two consecutive iterations and C
k

= HG - z . t{HZ . The upper bound of i in the algorithm
= tE

is set to be 2.

Algorithm 1  SNTF

Initialize all ¢,(i =1, 2, 3) with arbitrary non-negative values
Iterate
Calculate Eq. (4)
fori=1to2 do
if §;<S
Iterate
Calculate Egs. (5) to (7)
Until the sparseness of ¢; cannot be further improved

imin

else i=i+1
end for
Until ‘ Cold - Cnew ‘$€

From the viewpoint of image feature extraction, the results
of SNTF consist of two parts: k rank-1 matrices( or factors)
F, = W ov(1 <j<k), which form k basis images, each of
which reflects a local characteristic extracted from a given
image cube; and a d, x k matrix w, which contains d, weight
vectors with each vector involving k elements, each of which
indicates a basis image’s weight in constituting one of the d,

images in the image cube.
2 Numerical Simulations

We first investigate the SNTF approach’s capability in ex-
tracting features from a group of given bispectra, which are
derived from a set of simulated amplitude modulation signals
represented by

x(t) = A(1 + Bcos2xf,t)sin(2wf,t + ¢) (8)

where A=1,B=1.5,f, =750 Hz, f, =25 Hz and ¢ =0.
The sampling frequency f, and the number of sampling
points are set to be 4 000 Hz and 1 024, respectively.

By adding white noise to the existing sample in Eq. (8),
11 new samples are obtained and thus a sample set of 12
modulation signal samples is derived. Fig. 1 shows the bis-

pectrum of the first sample of the simulated signal.
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Fig.1 Bispectrum of simulated amplitude modulation signal
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After the bispectrum of each sample is obtained, an image
cube consisting of 12 bispectral images is formed, the data
form of which is a 64 x 64 x 12 tensor, since each bispectral
image( only the positive part is involved) is represented by a
64 x 64 matrix. Then different NTF methods are applied to
the tensor. Figs. 2(a)to (c) show some basis images calcu-
lated from the three aforementioned NTF algorithms,
Hazan’s algorithm, Heiler’s algorithm and the SNTF, respec-
tively. Tab. 1 shows the performance comparison among the
three algorithms.

Tab.1 Performance comparison among the three algorithms

Algorithm Reconstruction error/10 =3 Iteration steps
Hazan’s algorithm 3.9 15
Heiler’s algorithm 6.2 20

SNTF 3.4 10

From Fig.2 and Tab. 1, it can be found that the basis ima-
ges derived from both Heiler’s algorithm and the SNTF are
sparser than those derived from Hazan’s algorithm, which
has no sparseness constraints. However, Heiler’s algorithm
results in greater reconstruction errors and more iteration
steps than the SNTF. So the SNTF is more suitable for ex-
tracting features from an image cube.

3 Experiments and Analysis

The test rigs are shown in Fig. 3, where three single-stage
gearboxes( in the middle) are in three conditions—normal
condition, a driving gear with pitting faults, and a driving
gear with uniform wear. The number of teeth of the driving
gears and driven gears are 31 and 46, respectively. Vibration
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Fig.2 Some basis images resulting from the three NTF algo-

rithms. (a) Hazan’s algorithm; (b) Heiler’s algorithm; (c) SNTF

Fig.3 The test rigs

signals are collected when the rotating speed of the driving
gears is about 600 r/min. A total of 60 sample sets are col-
lected from the three gearboxes(20 each), and each set is
made up of 4 096 points. The meshing frequency of the
gearboxes and the ball pass frequency of the outer races
(BPFO) of bearings are 310 and 99. 7 Hz, respectively. The
sampling frequency is about 3 838 Hz. For the sample sets,
3/4 of them (15 sets for each state) are used for training and

the remaining 1/4(5 sets for each state) are used for testing.
Fig. 4 shows the bispectra for the three states.
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Fig. 4 Bispectrum of vibration signals in three states.
(a) Normal; (b) Pitting; (¢) Uniform wear

0.5
Tr

After the bispectrum of each sample is obtained, a training
image cube that consists of 45 bispectrum images and a tes-
ting image cube that consists of 15 images are derived. Then
the SNTF is applied to the training image cube. In the algo-
rithm, we set k =20. For basis images whose energies are lo-
calized in the same region, they are grouped and their sum is
taken. Fig. 5 shows the resulting five superimposed new ba-
sis images.

From Figs. 5(a)to (c)it can easily be seen that the energy
of each basis image is uniquely located around characteristic
frequency pairs (310, 310 Hz), (620, 310 Hz), and(310, 620
Hz) . So, compared with the bispectra in Fig. 4, the extracted
features here carry more distinct meanings. Moreover, the
experimental results reveal some features of quadratic non-
linearity. For example, the phenomenon of quadratic phase
coupling is evident in Figs. 5(d)and (e), where energies are
concentrated around frequency pairs (410, 210 Hz) and
(210,410 Hz), in which 210 and 410 Hz are approximate to
the difference and the sum of the meshing frequency and
BPFO, respectively. However, such a phenomenon cannot be
seen in a bispectrum( see Fig.4).
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Fig.5 Superimposed SNTF basis images

To find weight vectors denoting five basis images’
weights in constructing a bispectral image in the given im-
age cube, first all the basis images are normalized, and then
a set of overdetermined equations is solved as follows:

b=Ax +A,x,+ .. Ax +...+A x, 9)

where b and A;(1<j<m, here m =5) are matrices repre-
senting a certain original bispectrum image and a basis im-
age, respectively; and x;, an element of the weight vector
x, indicates basis image A;’s weight in constituting the im-
age b. Therefore, 45 training weight vectors and 15 testing
weight vectors are obtained from the training and testing
image cubes, respectively. Tab.2 shows some of the training

Tab.2 Some training weight vectors for the three states

Gearbox Weight of basis images
state Xy X X3 Xy Xs

0.0513 0.0025 0.0025 0.0026 0.0028
Normal 0.0538 0.0011 0.0027 0.0023 0.0026
0.058 7 0.0019 0.0025 0.0028 0.0036
0.0250 0.0108 0.0117 0.0021 0.0020
Pitting 0.0351 0.0112 0.0124 0.0029 0.0029
0.0383 0.011'1 0.0124 0.0029 0.002 4
1.8817 0.2381 0.4213 0.0649 0.0828
Uniform wear  1.6843 0.2195 0.378 8 0.0669 0.088 2
2.0605 0.2698 0.4396 0.0615 0.083 4

weight vectors out of the total of 45 (x, to x4 correspond to
basis images in Figs. 5(a)to (e), respectively).

Based on the basis images in Fig. 5 and the weight vec-
tors in Tab. 2, we can interpret the relationship between the
gearboxes’ states and the corresponding bispectra as fol-
lows:

1) In any state, the basis image Fig. 5(a) far outweighs
other basis images in constituting an original bispectrum,
which means that the greatest amplitude of a bispectrum is
always localized around the gear meshing frequency.

2) When pitting fault occurs, weights of basis images
Figs.5(b) and (c) increase. This phenomenon is in accord
with the failure mechanism of local damage. The meshing
process of a normal gearbox is composed of three stages,
i. e. the meshing between a pair of teeth, then the meshing
between two pairs of teeth, and finally the meshing between
a pair of teeth. These two changes in stage generate two
changes in the loads that act on gears, and two load changes
result in two shocks in a vibration signal. When local dam-
age occurs, load changes become more intense and the am-
plitude of the second harmonic of meshing frequency in a
bispectrum increases simultaneously.

3) When uniform wear occurs, the weights of all basis
images increase sharply. In particular, the weights of basis
images Figs. 5(b) and( c¢) increase a lot more than those of
other basis images. This phenomenon is in accord with the



350

Peng Sen, Xu Feiyun, Jia Minping, and Hu Jianzhong

failure mechanism of uniform wear. When uniform wear ap-
pears, involutes of teeth lose their shapes and the time-do-
main vibration signal develops gradually into the form of a
square-wave. As a result, the amplitudes of meshing fre-
quency and its higher-order harmonics increase in the bis-
pectrum, and the higher the orders, the greater the increa-
ses''”.

4) The weights of basis images Figs. 5(d) and(e) in the
three states indicate that amplitudes localize around frequen-
cy pairs which contain the difference and the sum of the
meshing frequency and BPFO, accompanying each state of
gearboxes.

The 45 training vectors and 15 testing vectors are then
fed into an SVM classifier whose kernel is Gaussian with
the bandwidth set at 10. Classification performance shows
that the three different faults of testing samples are all cor-
rectly identified.

4 Conclusion

In this paper, a sparseness-controlled algorithm for NTF
is proposed. The power of this algorithm is that it can lead
to sparser basis images, less reconstruction error and less it-
eration steps than previous methods. Application of SNTF
in extracting features from the bispectra of gearboxes’ dif-
ferent states shows that this method results in sparse basis
images whose energies are localized around fault character-
istic frequencies, which help to explain the relationship be-
tween machinery faults and corresponding bispectra. It is al-
so demonstrated that the proposed method is capable of de-
tecting quadratic nonlinearity of the system, which is intan-
gible in a bispectrum, and that the digital characteristics ex-
tracted from bispectra can contribute to effective fault clas-
sification. So, the proposed method alleviates the problems
that bispectral analysis has in applications, and it is expec-
ted to play a positive role in the popularization of HOSA in
machinery fault diagnosis.
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