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Abstract: The concise and informative representation of
hyperspectral imagery is achieved via the introduced diffusion
geometric coordinates derived from nonlinear dimension
reduction maps — diffusion maps. The huge-volume high-
dimensional spectral measurements are organized by the affinity
graph where each node in this graph only connects to its local
neighbors and each edge in this graph represents local similarity
information. By normalizing the affinity graph appropriately, the
diffusion operator of the underlying hyperspectral imagery is
well-defined, which means that the Markov random walk can be
simulated on the hyperspectral imagery. Therefore, the diffusion
geometric coordinates, derived from the eigenfunctions and the
associated eigenvalues of the diffusion operator, can capture the
intrinsic geometric information of the hyperspectral imagery
well, which gives more enhanced representation results than
traditional linear methods, such as principal component analysis
based methods. For large-scale full scene hyperspectral imagery,
by exploiting the backbone approach, the computation complexity
and the memory requirements are acceptable. Experiments also
show that selecting suitable symmetrization normalization
techniques while forming the diffusion operator is important to
hyperspectral imagery representation.
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yperspectral sensors such as the airborne visible/infra-
red imaging spectrometer ( AVIRIS), a NASA/Jet Pro-
pulsion Laboratory sensor, provide hyperspectral imagery in
the form of hundreds of narrow and nearly continuous spec-
tral bands. The spectrum recorded in each pixel of hyper-
spectral imagery is the measurement of solar radiation reflec-
ted by the Earth’s surface. It has been investigated recently
that there are many nonlinearities in hyperspectral image-
ry“f‘”; for example, in coastal environments, nonlinearities
arise from the variable presence of water in pixels as a func-
tion of position in the landscape. And it has been pointed out
that traditional linear data analysis tools, such as PCA and
MNF', the de facto standards in the analysis of spectral da-
ta, cannot perform as we wish, because these methods make
the assumption that the observed data are linearly correlated
and they are blind to the nonlinearities lying in hyperspectral
imagery.
In recent years, several well-known nonlinear modeling
approaches based on manifold learning concepts have been
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developed. These approaches, such as ISOMAP"', LLE',
Laplacian eigenmaps'”', and diffusion maps'®', have a com-
mon assumption that data lie on or near a low dimensional
manifold which is embedded in high dimensional Euclidean
space. It is a great improvement on exploiting the intrinsic
geometric information while modeling high dimensional
datasets. Parameterization of a low dimensional manifold
means obtaining concise coordinates representation. In the
case of measuring the distance between two points of high
dimensional space, by using this kind of coordinates, the dis-
tance is measured in the geometric way, which means that
the distance is measured along the manifold rather than the
straight line of Euclidean space.

As the nonlinear modeling mentioned above can efficient-
ly exploit the nonlinear characteristics in the high dimen-
sional data, recently some researchers'' ' in the hyperspec-
tral imagery analysis community have applied these approa-
ches to coastal land-cover classification and hyperspectral
segmentation applications. In Refs. [1 —2], they chose ISO-
MAP as a powerful tool to exploit the manifold coordinates
of hyperspectral imagery, as ISOMAP can guarantee global
optimal coordinates compared with other methods. Howev-
er, it is also proved that local approaches such as Laplacian
eigenmaps and diffusion maps, under the conditions choo-
sing exponential weights for the adjacency graph, lead to
convergence of the graph Laplacian to the Laplace-Beltrami
operator AM on the manifold”*"". These methods try to
construct a weighted graph from the given data set, and via
computing the eigenfunctions of the graph Laplacian, to in-
duce the global coordinates of the underlying manifold.

Inspired by the successful work of Bachmann, we have al-
so found that diffusion geometric coordinates computed by
diffusion maps'™®™'"! can also be used for hyperspectral im-
agery representation, and realize almost the same quality as
ISOMAP. Compared with the global manifold coordinates
computed by ISOMAP, the potential advantage of diffusion
geometric coordinates is more tractable computation com-
plexity and memory requirements for large-size hyperspec-
tral data, if we exploit the approximation nearest neighbor
searching technique'"”

1 Diffusion Maps and Diffusion Geometric Coor-
dinates

In Refs. [8 —9, 11], the authors presented a diffusion
process-based high dimensional data analysis framework.
Diffusion geometric coordinates, derived from diffusion
maps, can exploit the underlying geometries well, since in
the diffusion space the data points are reorganized in such a
way that the Euclidean distance corresponds to diffusion
metrics. The basic idea of diffusion maps is explained as fol-
lows.
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Let (I', A, u) be a measure space, where [ is a set whose
points are abstract objects. The data points can be thought of
as the nodes of a graph whose weight function k(x, y) satis-
fies the following properties:

1) k is symmetric: k(x, y) =k(y, x);

2) k is positivity preserving: for all x and y in I", k(x, y)
=0;

3) k is positive semi-definite: for all real-valued bounded
functions f defined on I,

[ e 0 f) dut du(y) =0

where y is a probability measure on .

Usually, k(x, y) is defined as a heat kernel, which means
k(x,y) =e #7172 " After normalizing the kernel appro-
priately referring to Refs. [9, 11], random walk can be de-
fined on the underlying graph, and the naturally symmetric
diffusion operator A with the normalized kernel a(x, y) can
be defined as

Af(x) = [ alx y)f() du(y) (1)

The following spectral decomposition can be induced on
the diffusion operator A by the spectral graph theory.

a(xy) = YA G0N A =l=A =, =
)

where A, and ¢,(x) are the corresponding eigenvalue and ei-
genfunctions of the operator A. As for diffusion step m, also
let @"(x,y) be the kernel of A", then the following equation
also holds:

a(x,y) = 3 A" d(0)d,(y) (3)

i=0

So the family of diffusion maps {@, } can be induced as
Ao o (%)
@0 = (o | @

Coifman et al. ™ also pointed out that the link between
diffusion maps and distances is

l@,(x) @, IP = X A"(d,(0) =, =D, (x.y)
(5)

which means that the diffusion map @, embeds the data into
a Euclidean space in which the Euclidean distance is equal
to the diffusion distance D,,. Moreover, the diffusion space
can be accurately approximated by retaining only the terms
when )\.,2"" remains numerically significant; therefore the em-
bedding

embedding

X —> X = {)\81 ¢o(x)7 /\;n @1(x)7 cees /\;: quﬁ(x)} (6)
satisfies

D (x,y) = |x —=3[P(1 +0(e™)) (7)

Here, the embedding coordinates refer to diffusion geo-
metric coordinates, since they capture the intrinsic geome-
tries exploited by the diffusion process. In the next section
we will use the diffusion geometric coordinates to represent
hyperspectral imagery in a concise way while retaining more
information than traditional linear methods.

2 Hyperspectral Imagery Representation via Dif-
fusion Geometric Coordinates

A hyperspectral imagery I with width w, height 4 and n
bands can be formally defined as a w x A matrix lying in
R". For the purpose of simplicity, here we ignore the spatial
relationship between each point. However, since spatial co-
herence is the important information for hyperspectral im-
agery investigated in Ref. [3], this work will be done in the
future.

We model hyperspectral imagery as a weighted graph
G(V,E).Here V is the set of vertices and each vertex de-
notes the original pixel of the hyperspectral imagery with n-
band spectral reflectance. For example, given one hyperspec-
tral imagery with 100 x 100 spatial resolution and 128 spec-
tral bands, while forming the graph G, the size of vertices is
10* and each vertex corresponds to the original pixel with
128 spectral bands. In order to construct the weighted graph
G(V, E), we should also know the edge set E and then con-
struct the affinity kernel according to the edge weights.
Based on the motif “think locally, fit globally”"”' which is
also the basic principle of diffusion maps, we only need to
know the nearest neighbors of each vertex in its original
spectral space. Given these vertices, finding the nearest
neighbors by using the approximation nearest neighbor
searching technique''” is nearly of linear computation com-
plexity. We connect each vertex to its nearest neighbors as
edges and accordingly construct the affinity kernel.

Knowing the local neighbors of each vertex, we can fill in
the weight matrix W between the vertex and its neighbors by
computing the bump function of their similarities such as
their spectral angle or traditional Euclidean distance since
the local neighborhood we consider is assumed to be a linear
subspace. For example, the weight w, between p, and p; can
be computed by w, =e 7717 ‘where | p, -p, | de-
notes the local similarity measure. Since the diffusion geo-
metric coordinates are the eigenvectors computed by the
eigensolver from the weighted matrix, we must symmetrize
this matrix in order to obtain the real eigenvectors. It is well
known that one asymmetric matrix W can be symmetrized
by adding its transpose W' or by dot multiplying its trans-
pose W' and so on. Here we adopt the ADD symmetrization
technique W, =W + W'. Experiments show that the sym-
metrization strategy affects final hyperspectral imagery rep-
resentation significantly. We compare different strategies in
the next section.

Next we normalize the symmetrized weighted matrix W
to construct Markov random walk W_, on the underlying
graph. Here we refer to W_ as the diffusion operator of the
hyperspectral imagery. As discussed in the previous section,
solving the eigenvectors {¢,(x), ¢,(x), ..., ¢, (x) } and the
eigenvalues (A, Ay, ..., A;) of W, we can obtain the fami-

™w?

ly of diffusion maps {@, }. Finally the diffusion geometric
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coordinates of the hyperspectral imagery are obtained as
{20 @(2), AT @0 (%), . A7 @, () } (8)

So from the viewpoint of dimension reduction, we reduce
the n-dimensional spectral space into j,-dimensional diffu-
sion space, and each pixel x, of the original hyperspectral
imagery can be approximately represented by the diffusion
geometric coordinate {Ay @y(X,), A} @(X%,), ..., A} @, (X)) }.
Note that each diffusion component in expression (8) has
just the same size entries corresponding to the size of the hy-
perspectral imagery with width w and height 4, and we know
that we have indexed each vertex according to its spatial lo-
cation {x,y) as

e =(y-Dw+x 9)

Therefore, for each entry e, of the diffusion component
A" ¢,, we can restore the corresponding spatial location (x,
y) of the image matrix by

y = [ }

(10)

w
X =ey —(y-Dw

Compared with PCA-based methods, it can be seen from
the former discussion that instead of computing correlations
between all pixels we construct the graph from small local
neighborhoods of each pixel. So the nonlinearities, in the
form of hypersurfaces lying in the high dimensional spectral
space, can be discovered by the simulated diffusion process
on the underlying graph. Also note that given two arbitrary
features f, and f, in the hyperspectral imagery, the diffusion
distance D, (f,, f,) measures the intrinsic similarities be-
tween the two features. We can approximate D, (f,, f,) by
computing ||, —f, || which means that we only keep the first
few diffusion geometric coordinates £, = { AL @, (f,), ...,
Ao, (f) Yand F, = (AS @y (f2) s A} @, (f2) }. And the ap-
proximate error decays exponentially while the diffusion step
m increases''"’. We use the following formula to evaluate the
approximate error A,

— H ||.fA‘| _jle_Dm(fl’fZ) H
D, (fi.f)

Fig. 1 shows that when the diffusion step is large enough,
only keeping the first few diffusion geometric coordinates,
we can approximate D, (f,,f,) well.

As discussed in Refs. [1 —2], usually each hyperspectral
imagery is composed of more than 10’ pixels, so one of the
efficient ways to compute the whole imagery diffusion geo-
metric coordinates is as follows: First, a feature representa-
tive backbone of the whole imagery is constructed and the
backbone diffusion geometric coordinates are computed; sec-
ondly, the imagery is divided into several computing-tracta-
ble small tiles and the diffusion geometric coordinates of
each tile are computed separately; finally, the alignment of
the coordinates system of each tile to the common backbone
diffusion geometric coordinates system is treated as one clas-
sic coordinate system transformation problem and the
pseudoinverse method is used to solve it.

A (11)
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Fig.1  Comparison of approximate error between different
diffusion steps

Two remarks should also be stated here. One is that we
will discard the first trivial eigenvalue and eigenvector be-
cause the nontrivial diffusion geometric coordinates, except
the first component, give meaningful information of the un-
derlying dataset. The other remark is that since we project
the hyperspectral imagery on the first j, diffusion compo-
nents, it is reasonable to view these j, components as new
“bands”; that is to say, we will use these diffusion compo-
nents to represent the hyperspectral imagery just as the origi-
nal spectral bands do.

3 Experimental Results

The experimental hyperspectral imagery is Moffet Field
Scene 2, obtained by AVIRIS in 1997, There are 224
bands and about 30 bands containing unstructured noise in
this imagery. So in our experiments, these bands are exclu-
ded, resulting in 194 bands. The resolution of the AVIRIS
194-band imagery is 614 x 512. Our experimental laptop is
Intel Dual CPU 1. 73 GHz, 2 GB memory and Windows Vis-
ta operation system.

We first select one 300 x 100 patch of the imagery to test
our method. We set K =10 to perform the nearest neighbor
searching, and the ADD symmetrization technique W, =W

+ W' is used to symmetrize the diffusion operator. The
patch of the imagery is projected to the first 15 diffusion ge-
ometric coordinates. It takes 64. 71 s to perform range search
forming the kernel matrix with the size of 30 000 x 30 000,
and takes 18. 45 s to compute the eigenvectors and eigenval-
ues of the sparse diffusion operator. In Fig. 2, our method
shows more superior representation results than traditional
linear PCA-based methods which are calculated by
OPTICKS!'". Though the first principal components contain
the most information after performing PCA transformation
on hyperspectral imagery, almost every component consists
of noise, and some components are contaminated too much
to be recognized. So we carefully select the components with
the highest SNR. Fig.2(a) shows the original spectral image
displayed wavelengths: 0. 65 pum, 0. 55 um, 0. 45 um; Fig. 2
(b) uses the lincar PCA coordinates 1-9-7 for the same
scene; Figs. 2(c) to (f) are represented by the diffusion geo-
metric coordinates 2-3-4, 5-6-7, 8-9-10, and 11-12-13, re-
spectively. Compared with linear PCA results, diffusion geo-
metric coordinates show the extensive structure of the hyper-
spectral imagery, which are almost comparable to the global
manifold coordinates derived from ENH-ISOMAP'"™
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Fig.2 Comparison of 300 x 100 patch of hyperspectral imagery representation between linear method and diffusion geometric
coordinates approach. (a) RGB image 0. 65 ,0.55,0.45 um; (b) Linear PCA coordinates 1-9-7; (¢) to (f) Diffusion geometric coordinates

2-34,5-6-7,89-10, and 11-12-13

Secondly, we experiment with different symmetrization
techniques while forming the diffusion operator on the un-
derlying hyperspectral imagery. It can be seen in Fig. 3 that
the dot-multiplication symmetrization technique W, =W
x W'(see Fig.3(a)) and the multiplication symmetrization
technique W, =W x W' (see Fig.3(b)) exhibit more de-
generated representation results than our adopting symmetri-
zation method W, =W + W'. Here we demonstrate the
RGB images of the diffusion geometric coordinates 2-3-4.
The reason is that when we construct the affinity kernel, on-
ly knowing the nearest neighbors of each vertex will lead to
the kernel matrix being really sparse, so forming the diffu-
sion operator by matrix multiplication or dot multiplication
will lead to the final diffusion operator being nearly singu-
lar. That is to say, the eigen-solved diffusion geometric co-
ordinates on the diffusion operator by these symmetrization
methods are not stable and contain significant numerical er-
rors.

Fig.3 Effects of different symmetrization methods on hyper-
=W. xW'i(b) W, =WxW"

sym

spectral representation. (a) W,

ym

Finally, we extend the experiments to the whole 614 x
512 imagery via the so-called backbone approach'™ . In or-
der to construct the feature-representative backbone of the
whole scene, we randomly selected 15% points as the back-
bone, since in practice 10% to 33% random samples of the

10° to 10° size dataset can approximately represent the fea-
ture space well. It takes 95.6 s to compute the backbone
diffusion geometric coordinates, and totally take 672 s to re-
construct the full scene coordinates. Fig. 4 shows the full
scene RGB representation via diffusion geometric coordi-
nates 5-6-7.

Fig. 4 Diffusion geometric coordinates 5-6-7 of the Moffet
Field scene Il in 1997

4 Conclusion and Future Work

By the study of nonlinear dimension reduction, we find
that the diffusion geometric coordinates can well represent
hyperspectral imagery. Compared with linear methods, the
approach presented in this paper has better feature separa-
tion ability and more scalable ability while dealing with lar-
ger imagery. We also investigate different symmetrization
techniques while forming the diffusion operator on the hy-
perspectral imagery, which significantly affects the repre-
sentation results.

Diffusion geometric coordinates exhibit great perform-
ance in modeling hyperspectral imagery, as they can suc-
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cessfully capture the intrinsic geometries underlying high-
dimensional data. However, some study still needs to be
done. First, it has been shown in Ref. [ 16] that, while mod-
eling complex structures such as graph and manifold, diffu-
sion processes and Markov processes can be analyzed in a
multiscale fashion. In this paper, we do not exploit the
multiscale analysis ability of diffusion geometric coordi-
nates. The relationship between multiscale diffusion and hy-
perspectral representation will be investigated in future
work. Secondly, the spatial coherence should be considered
while the diffusion operator is constructed. Finally, as for
the backbone approach, since it is originated from semi-su-
pervised learning methodology, more powerful and efficient
semi-supervised manifold learning methods should be inves-
tigated further.
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