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Abstract: A new favorable iterative algorithm named as
PBiCGSTAB ( preconditioned bi-conjugate gradient stabilized )
algorithm is presented for solving large sparse complex systems.
Based on the orthogonal list, the special technique of only storing
non-zero elements is carried out. The incomplete LU factorization
without fill-ins is adopted to reduce the condition number of the
coefficient matrix. The BiCGSTAB algorithm is extended from
the real system to the complex system and it is used to solve the
preconditioned complex linear equations. The locked-rotor state
of a single-sided linear induction machine is simulated by the
software programmed with the finite element method and the
PBiCGSTAB algorithm. Then the results are compared with those
from the commercial software ANSYS, showing the validation of
the proposed software. The iterative steps required for the
proposed algorithm are reduced to about one-third, when
compared to the BiCG method, therefore the algorithm is fast.
Key words: preconditioned bi-conjugate gradient stabilized
( BiCGSTAB ) algorithm; incomplete LU decomposition;
orthogonal list; finite element method( FEM) ; eddy current

he finite element analysis of sinusoidal steady-state ed-

dy current problems will ultimately be attributed to the
solution of large, sparse complex linear equations'"’ . Howev-
er, the calculation of complex linear equations is very com-
plicated in practical engineering problems. Although one can
change the complex system into the equivalent real system
of double the order, dramatically increased computation costs
often exceeds the level of tolerance. For many systems this
leads to strong coupling between the equations for the real
and imaginary components which may make solutions diffi-
cult. That is why this method is usually not under consider-
ation”. In previous papers, the complex linear equations
were solved using the direct algorithm of Gaussian elimina-
tion. However, the costs in terms of computer operations and
storage is unbearable when the number of equations is too
large. Iterative methods have become the mainstream method
for complex linear systems, especially for the large, sparse
ones. There are many iterative methods used for complex
systems, such as the BiCG method and the GMRES method.
The BiCG method is usually presented for non symmetric
positive definite ( SPD) equations. However, breakdowns
sometimes occur in the solution when the BiCG method is
used. Because there is no minimization of a norm as in the
CG method, the convergence behavior is irregular. The big-
gest disadvantage is that the transpose of the coefficient ma-
trix is needed, and this matrix is not always readily availa-
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ble”™. The GMRES method has monotonic convergence
and only involves one matrix-vector product with the coeffi-
cient matrix, but the amount of storage and operation count
increases as the iteration progresses'”'. Therefore, these
methods have considerable limitations in practical applica-
tions.

Equations with a large condition number of coefficient
matrices formed from discretization by finite element meth-
ods in the electromagnetic field ( EMF) problems may en-
counter slow convergence when iterative methods are ap-
plied directly to them. In order to improve convergence per-
formance and speed up the convergence rate of the iterative
methods, preconditioning techniques have been widely used.
A preconditioning operation is simply a means of transfor-
ming the original linear system into one having the same so-
lution, but it is likely to be easier to solve with an iterative
solver. In fact, the matrix might have a very large range of
eigenvalues, causing poor convergence behavior or leading
to loss of convergence. When preconditioners are used, a
new matrix is produced with eigenvalues closer to unity. A
variety of preconditioning methods have been elaborated in
Refs. [5 —6]. So far, preconditioners used frequently include
the incomplete Cholesky method (IC), the symmetrical suc-
cessive over-relaxation method( SSOR), and the incomplete
LU decomposition method ( ILU[ p]). Although IC decom-
position has been successfully used in real systems, the pre-
condition effect is not very good in the complex system. The
biggest drawback of the IC method is that it is only suitable
for symmetric systems'”’. The precondition effect of the
SSOR method intensively depends on the choice of a rela-
xing factor "', but how to choose the appropriate factor @
is still a difficult problem. The ILU[ p] factorization is wide-
ly wused and newer and better variants frequently
emerge” "', where parameter p, positive integer, denotes
the order of fill-in elements.

The major research work in this paper includes building
up the complex incomplete LU decomposition, implementing
the algorithmic program and solving large-scaled complex
linear equation groups by the complex incomplete LU
factorization bi-conjugate gradient stabilized method. The or-
thogonal list technology is introduced for the storage of the
coefficient matrix and the application of the PBICGSTAB al-
gorithm to eddy current problems in the linear induction mo-
tor is discussed. Results show that the proposed method is
precise and effective.

1 PBiCGSTAB Algorithm

Let us consider a set of complex linear equations written
as follows:

10]

Ox=b (1)
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where @ is a complex square matrix of order n;x is an un-
known complex vector to be solved; b is the constant com-
plex vector.

1.1 Incomplete LU decomposition

As mentioned above, the convergence speed is strongly
dependent on the coefficient matrix. In order to achieve good
convergence characteristics, it is a wise choice to employ
precondition technology. Eq. (1) is transformed into an equa-
tion system as

M 'Qx=M"'"b (2)

where M is a nonsingular matrix of order n. Here trans-
formed system (2) can be easier to solve, compared with
solving Eq. (1) . In this context, the matrix M is called a pre-
conditioner.

One of the simplest but effective ways of defining a pre-
conditioner is to perform an incomplete factorization as the
original matrix @. This entails a decomposition of the form
given as

Q0=LU+E (3)

where L(U) is lower (upper) triangular matrix with the
same sparse structure as the original coefficient matrix Q,
and E is the residual or error of the factorization. This in-
complete factorization known as ILU[O] is rather easy and
inexpensive to compute. Thus, preconditioner matrix M can
be calculated by

M=LU (4)
(a) (b)
(c) (d)
= Non-zero element
Fig.1 ILU[O] factorization. (a) Q;(b) U;(c) L; (d) LU

The incomplete factorization (ILU[0]) principle can be
best illustrated by Fig. 1. Consider one matrix Q as illustra-
ted in Fig. 1(a). As shown in Figs. 1(b) and (c), matrix
L(U) is easy to be found. If the product LU is performed,
the resulting matrix will have the pattern shown in Fig. 1
(d). It is impossible in general to match @ with this product
for any L and U. This is due to the extra diagonals produced
in the product, namely, the fill-in elements. If these fill-in el-

ements are ignored, then it is possible to find L and U so
that their product is equal to @ in the other diagonals. This
defines the ILU[O0] factorization in general terms.

Let S(M) denote the nonzero pattern of indices in M, in-
dicating the indices of row and column of all non-zero coef-
ficients (i, j) € S(M). Matrix M is implemented to keep
members of L and U. The ILU[O0] algorithm is listed as fol-
lows":

Set m; =q;
fori=2,...,n
fork=1,...,i-1 and (i, k) € S(M)

My =mgy/ my
forj=k+1,...,nand (i,j) € S(M)
My =mg; — mymy
end j
end k
end i

where m;; is the element in matrix M; ¢, is the element in
matrix Q.

1.2 BiCGSTAB algorithm

The BiCGSTAB algorithm is a variant of the BiCG meth-
od. The algorithm can be thought of as a product of the
BiCG method and the GMRES method. The residual vector
is minimized locally by the GMRES method. The BiCG-
STAB algorithm does not use the transpose of the matrix Q
in the calculation of the recurrences. This is advantageous
for cases where the transpose of the matrix @ is not readily
available. Ref. [11] indicates that it is hard to obtain a very
good result by the algorithm for which the convergence be-
havior is severely irregular. As a result, BICGSTAB algo-
rithms can achieve more precise results, when compared with
algorithms such as the BiCG and the CGS. However, when
the GMRES step stagnates, the residual vector is not mini-
mized and the algorithm breaks down.

The definitions of inner products and norms in the com-
plex systems are given as follows:

(X,Y) =X"Y (5)
Ixl, = \/Zix (6)
x|, = max(|x,|) (7)

where X, Y denote complex vectors; sign H denotes conju-
gate and transpose, that is, X" = (X*)T;xl. is the element of
complex vector X; n is the dimension of the vector X; \x,. |
is the absolute value of a complex number.

Based on the definitions of inner products and norms
above, the iterative formula of the precondition BICGSTAB
method can be written as follows:

1) Input matrix @, right vector b, original vector x, and

error g, compute r, =b — Ox,, E =r,, P, =1y}
2) Iteration for i =1,2, ...,

MY, = GRA = Y
i =Pj y=—— 8, =r,-a,0Y,
(r;, QY))
(QZ,s,)
Mijsj, (WZW, X, :x,.+a_,.Yj+ij,.
J? J
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o (r.r.)

r.,=5j-w0Z, P
i (r,r)

Bj+l =

pj+l :rj+] +18j(pj _ijZj)

3) If Hrj+l H2/||rU Hz < g, then stop; otherwise j =j + 1,
begin a new iteration, and go back to 2).

1.3 Data storage technique

The coefficient matrix obtained by the FEM in eddy cur-
rent problems is a large scale of a sparse one. In general,
there are fewer than 10 non-zero elements in each row. As a
consequence, it is costly to store every element in the coeffi-
cient matrix. Based on the orthogonal list, the special tech-
nique of storing only non-zero elements is used in this pa-
per.

In fact, not only a lot of memory is saved but also modifi-
cation operations can be carried out conveniently under this
data storage strategy. In the orthogonal list, each cell is a da-
ta structure. The connections between cells are linked by a
pointer. The context of cells is illustrated as follows:

‘ 3 ‘ J ‘ comp ‘ p ‘ dp |

where i, j respectively denote the indices of rows and col-
umns; comp is a complex structure in which the real compo-
nents and the imaginary components of complex numbers
are stored. rp is a pointer pointing to the next cell in the
same row. If the current cell is the last in the row, rp points
to NULL. dp is a pointer pointing to the next cell in the
same column. If the current cell is the last in the column, dp
points to NULL.

2 Simulation Model

Eddy current problems produced in a linear induction ma-
chine( LIM) are essentially three-dimensional. However, di-
rect three-dimensional field analysis of the problem may
cause a huge amount of calculation. As a matter of fact, two-
dimensional analyses are accurate enough for most practical
problems, and also easy and economical to apply.

In order to simplify practical problems into two dimen-
sions, the assumptions made in this analysis are enumerated
as follows:

1) The source current density and the magnetic vector po-
tential have only z directed components, which are invariant
in that direction, and vary sinusoidally with time;

2) The current-carrying conductors are assumed to have
infinite conductivity and the eddy currents within them can
be ignored;

3) The iron parts are of finite single valued permeability
and resistivity. Hysterisis, magnetic saturation and tempera-
ture effects of resistivity are ignored;

4) The field is assumed quasi-stationary, so that displace-
ment currents are absent.

In view of the foregoing assumptions'”™"', the convective
diffusion equation for eddy current problems can be depicted
as follows:

0A

VX('yVXA)+U'§—J (8)

where vy is the reluctivity; ¢ is the conductivity; J is the

ampere density (complex); and A is the magnetic vector
potential( complex) .

The computational model in two-dimension is established
in Fig. 2. As we can see, the entire motor needs to be studied
and one pole pitch is extended at each end of a primary core
so as to consider longitudinal end effects'*. According to
the computational model, boundary value problems( BVP)
are given by

) : )

y Ay T s jowd —J}}
ax ay

Ay =Anp=A,,=A =0

(9)

guobogoguodugog

D C
Fig.2 Computational model of LIM

By using the Galerkin method, Eq. (9) becomes an inte-
gral equation as

2 4 2 ¢
JW{(vaé +76?)+J} _ij}d:2 =0 (10)
o) 0x ay

where the weighting function W is set to be equal to an in-
terpolation function and (2 denotes the boundary enclosing
the whole computation region. One can obtain the large
sparse complex linear equations after discretizing (10) and
imposing the boundary conditions,

KA =f (1D

where K is a coefficient matrix of order n; A is an unknown
vector to be solved; f is the source on the right hand side.

3 Results and Comparison

Based upon the finite element method and the PBiCG-
STAB solver, the FEM software used for performance analy-
sis of a linear machine is programmed by C ++ . In order to
prove the correctness of the programmed software, a locked-
rotor state of a single-sided LIM is simulated. Then the re-
sults are compared with those from the commercial software
ANSYS. Also, the convergence characteristics of the BiCG
method, the BiCGSTAB method, and the PBiCGSTAB
method are compared.

The flux densities in the centerline of the gap are given in
Fig. 3 and Fig. 4. In fact, only the real component of the Y-
axis component of the flux density B, is provided, mainly
due to the fact that flux densities are complex and two-di-
mensional. Through the comparison of FEM and ANSYS,
the validity of FEM software is confirmed. Thus, the correct-
ness of the PBiCGSTAB algorithm to solve complex equa-
tions is proved. Fig. 3 is plotted when the phase angle of the
current in phase A is equal to 30°. However, the angle in
Fig. 4 is 60°.

A comparison is made between the BICGSTAB method
and the BiCG method, which is commonly used in the solu-
tion of complex linear equations. Also, the comparison be-
tween the BICGSTAB method and the PBiCGSTAB algo-
rithm is carried out. In order to compare the rate of conver-
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gence and the convergence characteristics, convergence
curves of various iterative methods are provided in Fig.5
and Fig. 6. Here, a new criterion for judgment is presented.
When the qualification Hr||ac < 107® is satisfied, the algo-
rithm is considered to have converged.
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0.1
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Flux density along air gap (phase is 30°)
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Fig.4 Flux density along air gap (phase is 60°)
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Fig.5 Convergence curve of iterative method(1 925 nodes)

It can be seen in Fig.5 and Fig. 6 that all the three algo-
rithms converge to the final result; however, the required it-
erative steps are different. In order to obtain the same accu-
racy of results, the BiCG algorithm requires the most itera-
tive steps. Irregular convergence behavior is another draw-
back of the BiCG method.

Oscillation accompanies the whole convergence process.
This is mainly because there is no minimization of a norm as
in the CG method. As we can see, the BICGSTAB algorithm
can reach very good accuracy in fewer steps and its conver-
gence curve is much smoother in comparison with the BiCG
method. The best method mentioned above is the PBiCG-
STAB method which converges rapidly to the precise results

— BiCG
------------- BiCGSTAB
—+— PBiCGSTAB

500 600

%0 100 200 300 400
Iterative steps
Fig.6 Convergence curve of iterative method(4 950 nodes)

without oscillation. Through the contrast between the BiCG-
STAB method and the PBiCGSTAB method, precondition-
ing techniques have been proved to be of great importance in
the solution of the large, sparse and complex systems.

4 Conclusion

The orthogonal list technology is suitable for the storage
of a large sparse matrix, especially for a complex one. The
BiCGSTAB algorithm can reach very good accuracy in fe-
wer steps and its convergence curve is much smoother in
comparison with other iterative methods in the solution of a
complex system. Precondition technique of incomplete LU
decomposition can greatly improve the efficiency of the al-
gorithm. The combination of the BICGSTAB method and in-
complete LU decomposition is appropriate for the solution of
complex equations generated in the finite element analysis.
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