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Periodic solutions of non-autonomous differential delay equations
with superlinear properties
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Abstract: The existence of periodic solutions of a class of non-
autonomous differential delay equations with the form x'(7) =

n-l

- 2 f(t,x(t —kr)) is considered, where r >0 is a given constant
k=1

and fe C(R xR, R) is odd in x, r-periodic in ¢ and satisfies
some superlinear conditions at origin and at infinity. First, the
delay system is changed to an equivalent Hamiltonian system.
Then the existence of periodic solutions of the Hamiltonian
system is studied. Periodic solutions of the Hamiltonian system
can be obtained by critical points of a functional defined on a
Hilbert space, i. e. , points satisfying ¢’ (z) = 0. By using a
linking theorem in critical point theory, the existence of critical
points of the functional is obtained. Therefore, the existence of
periodic solutions for the Hamiltonian system and its equivalent
differential delay equation is established.
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n the fields of applications, a variety of practical prob-

lems, such as communication systems', population
growth models'”', the operation of a control system working
with potentially explosive chemical reactions'”, and even in
economic studies of business cycles', can be described by
the following differential delay equation,

x'(1) = —aftx(1-1)) (1)

where « is a real parameter and f is odd.

Eq. (1) was first studied by Jones™ on the existence of
periodic solutions in the 1970s. After that, according to doz-
ens of applications, various questions on periodic solutions
of Eq. (1) were considered by many researchers'"> . In re-
cent years, the reduction method introduced by Kaplan and
Yorke"' was applied to study the existence of multiple peri-
odic solutions of a more general form of Eq. (1) as fol-
lows' ™'

n-1

x'(1) =- Z,f(x(t —kr)) (2)

Under the asymptotically linear conditions at origin and at
infinity,

TGRSR TING (€. R (3)

x—0 X X0 X

where o, «,, € R and \ao , lay, \ < 4+,
More specifically, they reduced the study of multiple peri-
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odic solutions of Eq. (2) to the problem of seeking multiple
periodic solutions for a related system of the Hamiltonian
system, which is called the coupled system of Eq. (2). The
condition (3) plays a crucial role in the study of periodic so-
lutions of Eq. (2) in Refs. [7 —10], since the principle tools
employed in their papers are various index theories. There-

fore, \ao\, \aw | < + o s necessary, since \ao\ or
\am | = + o will bring difficulty to the discussion of the
problem.

Now there are many results based on the autonomous dif-
ferential equation (1). However, Belair and Mackey'" stud-
ied a class of non-autonomous equation (1) where the delay
depends on ¢ instead of the constants. In this paper, we con-
sider the following non-autonomous differential delay equa-
tion,

n-1

x'(n =- Zf(t,X(t —kr)) (4)

where r =27/n is a given constant and f( ¢, x) satisfies the
following assumptions:
fl) f(t,x) e C(R xR, R) is odd with respect to x, r-peri-

odic with respect to ¢ and f:f( t,£)dé >0 for xeR;

f2) There exist constants u >2,1 <A <2,¢, >0 and R >0
f,) uf froe.
Vi]x|>R Yt el0r];

£3) The limits lim 22 = 0, 1im &%) = o exist uni-
-0 X X X

such that < ¢ lx|Mxf(t,x) =

formly in 7.
Then our main result reads as follows.
Theorem 1 Suppose that f( 7, x) satisfies f1) to {3).
Then Eq. (4) possesses a nontrivial 2qr-periodic solution.
We use the reduction method"” and a linking theorem in
critical point theory """ to prove our result. The ideas come
from Refs. [11 —13]. Theorem 1 will be proved in section 2.

1 Some Preliminaries

Let E be a Hilbert space with E = E, ©E,. Let P, and P,
be the projections of E onto E, and E,, respectively. Write

A={peC([0,7] XE) | (0, u) =u, P,(t,u) =P,u —K(t,u)}

where K: [0, r] x E—E is compact.

Definition 1 Let S, Q C E and Q have boundaries. We
call S and 9Q link whenever y € A and (¢, 9Q) NS =
for all ¢, then (1, Q) NS#(.

Definition 2 A functional ¢ € C '(E, R) satisfies (PS)-
condition, if every sequence such that {z,} CE, ¢'(z,)—0
and ¢ (z,) being bounded possesses a convergent subse-
quence.
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The following theorem is Theorem 5. 29 of Ref. [11] and
is used in our discussion.

Theorem 2 Let E be a real Hilbert space with E=E, &
E,, E, = E; and inner product ( ). Suppose that ¢ e
C'(E, R) satisfies (PS)-condition, and

1
1) ¢(2) =7<Az, z) +J(z), where A(z) =A,P,z+A,P,z

and A;: E,—E, is bounded and self-adjoint, i =1, 2;

2) J' is compact;

3) There exist a subspace ECE and sets SCE, QCE and
constants o > @ such that ) SCE, and ¢ \ s=a; @ Qs
bounded and ¢ | ,,<w; @ S and §Q link. Then ¢ possesses
a critical value c=a.

2 Proof of the Main Result

Now we reduce Eq. (4) to an equivalent Hamiltonian sys-
tem. Precisely, for n = 2N € Z", if a 2m-periodic solution
X(t) ={x,(1),x,(2), ..., x,(t) } of the following system,

d
X0 =A,F(1. X(1))

where
0 -1 ... -1 -1
1 o ... -1 -1
A =1 1 Lo (5)
P -1
1 1 ... 1

satisfies the following symmetric structure

x (1) = -x,(t-r),x(t) =x,(t-r),....,x, (1) =x,,(t-71)
(6)

then x(¢) =x,(t) is a 2q-periodic solution of Eq. (4) and
satisfies x(t —nr) = —x(t). Here F(¢t, X(1t)) = (f(¢, x,),
flt, x,), ..., f(t,x,)). Since A,, is a nonsingular skew sym-
metric Hamiltonian matrix, system (5) can be written as the
following Hamiltonian system,

Z'(1) =A,H (1,2) (7)

where H(1, 7) =f’f(r,x)dx+... +f“f(r,x)dx, Vz=(z,

Zys ooy Zoy) E R*, and H, (t, z) denotes the gradient of
H(t, z) with respect to z. In this paper, we always assume
that n =2N is even.

Lemma 1 Under the conditions f1) to f3), the Hamilto-
nian function H(t, z) satisfies

H1) H(t,z) e C'([0,r] xR*™,R™) is even, r-periodic in
t,and H(t,z) =0 for all (¢,z) [0, r] x R™;
H(t,z) _ H(t,z2)

=0, lim
| zI® leb= [2]?

H2) The limits ‘llr&) = o exist

uniformly in #;

H3) There exist constants ¢, >0, L >0 such that for all
with z; >R, i=1,2,...,2N,and t € [0, ], 0 <uH(t, 2) <
H(1,2), |H(1,2) |<c,|z]".

Proof From f1) and f3) and the definition of H, we
can check easily that H1) and H2) hold. By xf(f,x) =

,ufof(t,g)dg, VY |x| > R, we have a constant L = /2N R

such that 0 <uH(t,z) <zH (t,z) for |z| > L with z, > R.
Now we prove \Hz(t, 2) \Scz \z \A for z, > R;i. e. ,fz(t, z,)
1 2) + o+ (2 ST+ + .+ )

First, it follows from 0 <f(t,z,) <c, |z, |" that f>(t, z,)
<cilz, [ Now we show f(t,z,) +f(t,z,) <ci( |z |
+ 1z, [™). Let |z, |* = 7cos, |z,|" = 7sing. Then (z, +
)t =7 (cos 0 +sin” @) =77 = |z, [* + |z, [, since for
1<A<2,1-sin°=(1-sin”"9)*;i.e., (cos’ 9 +sin”" )
=1. By the reducing method, we have z* + 22" + ... + 74 <
(Z+z+...+20)" = |z, Thus, the
|H.(t,2) | <c, |z]" since z, > R holds.

In the sequel, we work in the Hilbert space E = W%’Z(S '
R*) with the inner product ( -) and the norm | +|. The
simplest way to introduce this space is shown as follows.
Every function z e L*(S', R*™) has a Fourier expansion z( t)

inequality

=a, + z (a,cosmt + b, sinmt) , where a,,, b, are 2N-vec-

m?>
m=1

tors. E is the set of such functions that ||| = |q,[* +

®

z m( ‘ a”l

m=1
With the norm H - |l, E is a Hilbert space. For VY z,y e E,
we define an operator A on E by

2+\bm\2) <+ .

(Azy) = [ AR 2y (8)

It is not difficult to verify that A is a bounded self-adjoint
linear operator on E and kerA = R**. For any Y z e E, we de-
fine

J(7) = J:ﬂH(t, (1)) dt (9)

Then critical points of the following functional on E defined
by ¢(z) = %<Az, z) — J(z) are periodic solutions of the

Hamiltonian system (7). In order to obtain periodic solu-
tions of Eq. (7) with the symmetric structure (6), we define
the following action matrix,

0 0 0 -1
1 0 0

TzN =10 1 :
: i .. 0 0
0 0o ... 1 0

Then by T,,, for any V z(¢) € E, define an action on z by

62(1) =T,yz(1=71) (10)

Then by direct computation we obtain that &Vz(1) = —z(t -
2Nr), 8" z(t) =z(t) and G = {8, 8", ..., 8"} is a compact
group action over E. If x(#) = x(¢) holds, then through a di-
rect check, we obtain that z(¢) has the symmetric structure
(6).

Write E, = {x e E ‘ 6x(t) =x(t)}. Then from z(t) =
—2z(t—-2Nr) and direct computation, we obtain that E, =

{z() | z(1) = iamcos(Zm —1)t +b,sin(2m —1)t}-

Lemma 2  Critical points of ¢ | g, over E; are critical
points of ¢ on E, where ¢ | £, 1s the restriction of ¢ over E,,.
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Proof The definition of H(t, z), together with a direct
computation implies that

H(t, T,yz) =H(t,z2), H(t,Tyyz) =T, H.(1,2)

Combining these with (10) and the fact that any z(t) € E is
2qr-periodic, we can verify that ¢ (82) = ¢ (z), ¢'(6z) =
8p'(2) =¢'(2).

That means ¢ is G-invariant and ¢’ is G-equivariant. Mo-
reover, ¢’ (z) e E,. Therefore, if ¢’ (z) =0 on E,, then
¢'(z) =0 on E. Hence, the conclusion of lemma 2 holds.

Note that kerA = R*. Let E, and E, denote the positive
definite and negative definite subspace of A in E,, respec-
tively. Then E, = E; @ E, . Letting E, = E,, E, = E, , we
see that ¢ satisfies 1) of theorem 2. By Lemma 4. 1 of Ref.
[14], J'" is compact. Hence, 2) holds. Now we establish 3)
of theorem 2 by the following three lemmas.

Lemma 3 If H satisfies H1) to H3), then (D) of 3) holds
for ¢ ‘ E,

Proof From H1) to H3), one has H(t, z) <c, + ¢,
|z|**", V(1,2) [0, r] xR*.By H2), for any & >0, there
LV (2 elo,r], [zl <

is an >0 such that H(t,z) <&

Therefore, there is an M = M( &) >0 such that

Y (t,z2) [0, r] xR™
(11)

Since E, is compactly embedded in L’(S', R*) for all s=1
and by (11), we have

H(t,2)<el|z| +M|z|**

27
[ H(L 2 < g2+ M|z <
0
(ees +Mey||z| ™) [IF

Consequently, for z e E,, ¢(2) = ||z|]* = (ecs + Mc, || z]|'™)
[zIF. Choose & = (3¢;) ' and p such that 3Mcp"* ™" = 1.

B%pz = a. Thus, ¢, satisfies

Then for any ze 0B, NE,, ¢,
@ of 3) with S =B, NE,.
Lemma 4 If H satisfies H1) and H3), then ¢, satisfies
@ of 3).
Proof SeteeS=9B,NE, and let Q = {se: 0 <s5<2s,}
®B,, NE,, where s, is free for the moment. Let E, = E; &

span{e}. Denote

I ={zekE;:|z|=1}, A~ = inf

ey |z |k
| (Az*,z%) |

E H |1
vV AT/A", one has

| (Az7,z7) |
At =

Casel If ||z~ ||>'sz |w1thy

1 PN 1 -
@ (52) = 7<Asz , 52" +7<Asz ,s77) —

2m

1
j H(t,s2)dt < - A~ 5|z ||2+—A 4P
0

2 <
> <o

Case2 If ||z [<yllz" |, we have 1 = |[z[} = [z | +

2" P<(1+9%) llz* P, that is, 2" \|2>1+1—2>o. Denote

I'={zeTl: |z |<yllz* |}. By a similar argument with the
claim of Ref. [13], there exists £, >0 such that Yu e I,

meas{t e [0, r]'u(t) e 1=

Now for z=z" +z" e T, set(l ={te[0,r]: |2(0) | =
g,}. By H2), for a constant M = ||A||/.9, >0, there is an L,
>0 such that H(t,z) =M |z|*, ¥V |z > L, uniformly in .
Choosing s, =L,/¢,, for s=s,, H(t, sz(t)) =M | sz(1) | =
Msz,c;f, Y t e (). Then one has

@i (52)

= ;—52<Az*,z*> +%s2<Az’,z’> -

27
f H(t, s2)dt < | A|ls° —fH(t,sz)drs
0 2 0

Sllalls - Ms'e meas(2) <

1 ; 1 2
Slals - msel == Lyafs <o

Therefore, ¢, (5z) <O for any ze I" and s=s,3i.e., ¢, | ,,
<0. Then ) of 3) holds.

Lemma S § and 9Q are linking.

The proof is similar to the theorem of Ref. [12]. Here we
omit the details. Now it remains to verify that ¢, satisfies
(PS) -condition.

Lemma 6 Under the assumptions of lemma 1, ¢, satis-
fies (PS) -condition.

Proof Suppose that | ¢, (z,) [<M, ¢’, (z,)—0 as m—
o . By a standard argument, we only need to show that {z,,}
is bounded. Then {z,} has a convergent subsequence. If
{z,,} is not bounded, then pass to a subsequence if necessa-
ry, ||z, > + o as m—oo .

By H2), there are two constants M, ¢, >0 such that H(t,
7)=c,|z|* for |z| >M,. Then one has

2m
206(2) = (@225 = [ (2H(13,) =2H(1.z,))dr 2
2 2w
[ w-2HG )@= =D g, P
This yields

2w
AR
o

—0
Iz, I

m-—

(12)

Write k =1/2(A - 1). By H3), there is a constant ¢, > 0
such that |H_(t,2) |*<cf[z|" +¢,, YVte[0,r] xR
Therefore,

27

27
| IH(z) < [ ez, 1 e <
0 0

2 = 2 +
o[ latar) ([, e ear) e <
eo( [ lelpar) oo e
1 . ZmH i 12

This inequality and (12) imply that

o T
s ([l lpar)
)

Iz, I

1

([ 1Hnz o)

(—
2T

KA =1
HZm H Cip

AR
m Zm

—0
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as m—o , since k > 1. Let z, =z, +2z, € E, ®E, . We have sional differential-delay equations [J]. Tohoku Math J, 1978,
30(1):13 —35.
(A7, 77) f 2"[ H(tz)dt = [2] Cunningham W J. A nonlinear differential-difference equation
meem of growth [J]. Proc Nat Acad Sci, 1954,40(5):709 —713.
[3] Jones G S. The existence of periodic solutions of f (x) =
—of(x(t =1){1 +f(x) }[T]. J Math Anal Appl, 1962, 5(3):
2 G 435 - 450.
<AZ;, Z,;> - (f ‘Hz(f, Z,) ‘Kdt) C, ||Z,; || [4] Belair J, Mackey M C. Consumer memory and price fluctua-
‘ tion commodity markets: an integro-differential model [J]. J
where C,_ >0 is a constant independent of m. Diff Eq, 1989, 1(2):299 —325.
By the above inequality, one has [5] Kaplan J, Yorke J. Ordinary differential equations which yield
periodic solutions of differential delay equations [J].J Math
(Az;,z0) Nl e (z) izl Anal Appl, 1974,48(2):317 —327.
‘ z H z || = || z, || H z H [6] Nussbaum R D. Periodic solutions of special differential de-

(0% (2,),2,) =

2%
Aepz) = [ el H () d=

m

i lay equations: an example in non-linear functional analysis
fzﬂ ( ‘Hz(t’ Z,) ‘Kdt) " C, ”Z; ” N [J]. Proceedings of the Royal Society of Edinburgh, 1978,
[zl 81A(1): 131 -151.
[7] Li J, He X. Multiple periodic solutions of differential delay
as m—oo . This yields equations created by asymptotically linear Hamiltonian sys-
tems [J]. Nonlinear Anal TMA, 1998,31(1):45 —54.

[8] Li J, He X, Liu Z. Hamiltonian symmetric groups and multiple
periodic solutions of differential delay equations [J]. Nonlin-
ear Anal TMA, 1999,35(4):457 —474.

[9] Fei G. Multiple periodic solutions of differential delay equa-

||Z+ | tions via Hamiltonian systems ( [ ) [J]. Nonlinear Anal

"0 m— oo (14) TMA, 2006, 65(1):25 —39.

HZ'" I [10] Fei G. Multiple periodic solutions of differential delay equa-

tions via Hamiltonian systems ( I ) [J]. Nonlinear Anal

TMA, 2006, 65(1):40 —58.

||Z || I z, I+ HZ,,: I [11] Rabinowitz P H. Minimax methods in critical point theory
= ”Zm ”\ ”Z ” —0 m— o with applications to differential equations [ C]//CBMS Re-
gional Conf Ser in Math. Miami, USA, 1986: 32 —33.

a contradiction. Hence, {z,,}is bounded. [12] Chang K C. Critical point theory and applications [ M].
Shanghai: Shanghai Science and Technology Press, 1986. (in
Chinese)

[13] Fei G. On periodic solutions of superquadratic Hamiltonian
systems [J]. Electronic J Diff Eq,2002,2002(8):1—12.

[14] Long Y, Zehnder E. Morse theory for forced oscillations of
asymptotically linear Hamiltonian systems [ C]//Stochastic
Processes in Physics and Geometry. Singapore: World Scien-
tific, 1990: 528 — 563.

0 m

Iz, |

llz

—0 m— oo (13)

m

Similarly, we have

Thus, it follows from (13) and (14) that

Now we are ready to prove theorem 1.
Proof of Theorem 1 It is obvious that theorem 1 holds
from lemma 1 to lemma 6 and theorem 2.
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