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Abstract: An improved parallel weighted bit-flipping (PWBF)
algorithm is presented. To accelerate the information exchanges
between check nodes and variable nodes, the bit-flipping step and
the check node updating step of the original algorithm are
parallelized. The simulation experiments demonstrate that the
improved PWBF algorithm provides about 0. 1 to 0.3 dB coding
gain over the original PWBF algorithm. And the improved
algorithm achieves a higher convergence rate. The choice of the
threshold is also discussed, which is used to determine whether a
bit should be flipped during each iteration. The appropriate
threshold can ensure that most error bits be flipped, and keep the
right ones untouched at the same time. The improvement is
particularly effective for decoding quasi-cyclic low-density parity-
check( QC-LDPC) codes.
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ow-density parity-check (LDPC) codes, discovered by

Gallager in 1962, have attracted much research interest
recently. The belief propagation( BP) and its suboptimal ap-
proximation, the min-sum algorithm''™, can achieve excel-
lent performance. However, they are usually too complex
for implementation. The bit-flipping ( BF) decoding algo-
rithm originally devised by Gallager is very simple, but of-
ten results in serious performance loss. The weighted BF
( WBF) algorithm provides an effective trade-off between er-
ror performance and decoding complexity'”. The main
shortcoming of this algorithm is its slow convergence rate,
since it flips only one bit after each iteration.

The parallel weighted bit-flipping (PWBF) decoding al-
gorithm'™” provides a parallel implementation framework
for various WBF algorithms'®®'. Compared with the serial
form of the WBF algorithm, the PWBF decoding algorithm
flips multiple bits after each iteration. Simulations prove
that it only needs five iterations to approach the performance
of various improved WBF decoding algorithms with 50 or
more iterations. However, a performance gap still exists be-
tween the PWBF decoding algorithm and the min-sum algo-
rithm, with a similar decoding rate.

In this paper, we discuss the improvement of the PWBF
decoding algorithm. To accelerate the information exchan-
ges between check nodes and variable nodes, we propose a
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scheme, which carries out several steps of neighboring itera-
tions in parallel. This improvement, while requiring very
low additional computational complexity, results in a per-
formance gain over the PWBF algorithm and a higher deco-
ding rate at the same time. The proposed scheme is effec-
tive, especially when applied to QC-LDPC codes'""".
Simulations prove that the improved PWBF algorithm
achieves better performance and converges faster.

1 PWBF Algorithm

Let C be a regular LDPC code with the block length N
and the dimension K, which can be represented by a parity-
check matrix H = (h,, ,) with M rows and N columns. Let p
and y denote the column-weight and the row-weight of the
matrix H, respectively.

We assume information transmission using BPSK signa-
ling over an AWGN channel. Let ¢ = {c,, ¢,, ..., c¢,} de-
note a codeword, which is mapped to x = {x,, x,, ..., X}
by x, =2c¢, — 1 before transmission. At the receiver, we ob-
tain the received vector y = {y,, y,, ..., Yy}, wherey, =x,
+v, n=1, 2, .., N, and v, is the zero-mean additive
Gaussian noise with a variance of o> = N,/2.

Let z ={z,, z,, ..., zy} be the hard-decision sequence
obtained from y with z, =sgn(y,), where sgn(y,) =1 if y,
=0, and sgn(y,) =0 if y, <0. We denote N(m) = {n:
h, ,=1, 1sn<N} and M(n) ={m: h, , =1, 1sm<
Mj}.

The PWBEF algorithm is proposed in Ref. [5]. Some pa-
rameters are defined as follows: k is the iteration counter;
g, 1s the set of unsatisfied check nodes; F, (k) is the
threshold to be optimized; F, is the set of bits to be flipped
at the k-th iteration.

When the PWBF algorithm uses the functions of the IM-
WBF algorithm, it is carried out as follows.

Algorithm 1 PWBF algorithm

1) Initialization

Set k=1; z=sgn(y).

2) Iteration

(D Compute the syndrome component s, =

z z, for

neN(m)
each me[1, M], and collect all unsatisfied check nodes to

form g, ={m|s, =1, me[l, M]}.
(2) Compute flipping function E, for each ne[1, N],

E, = 3 s, =Dlo,,|=aly| D
me M(n)
where @, , = min |y, |, and « is a positive constant less
’ ieN(m)\n
than 1.
@ Locate n* =arg max{E,} and send a “flip” signal to
neN(m)

variable node n" for each m e g,,.
@ Accumulate the “flip” signal to F,(n) for eachne[1,
NJ.
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(® Identify the bits whose F,(n) are larger than F, (k),
and flip them in parallel.

© Increase k by 1, and repeat steps (D to 5 until all the
parity equations are satisfied or the maximum number of it-
erations is reached.

The PWBF algorithm can be adopted to various WBF al-
gorithms with different flipping functions E,. In this study,
we choose the parallel IMWBF (PIMWBF) algorithm and
the parallel WS-BF (PWSWBF) algorithm to illustrate the
effect of improvement given in the next section. The flip-
ping function of the PIMWBF algorithm is shown in Eq.
(1). For the PWSWBEF algorithm, the flipping function is
computed as follows.

First, the reliability of check nodes is defined as
w, =K - num {|y, |<T} (2)
where K is a positive integer no greater than the row weight
of the matrix H; R(m) is the set of reliable symbols that
participate in the m-th check equation; T is the threshold. A
symbol’s reliability is judged by its magnitude |y, |. If
\ V. \ =T, we call it “reliable”, and “unreliable” otherwise.
If w, <0, we set it to 0. The newly defined E, is as fol-
lows:

E, = Y wES (3)
me M(n)
where
o {y,,—nfglNi(g)yn Z s, =0
[y, [ = min |y |/2 = max [y [ s, #0
(4)

Besides, we set n” =arg min {E,(o) } in step @.
neN(m)

2 Improved PWBF algorithm

In the PWBF algorithm, when a bit is flipped in step (3),
its information will not be used to update the syndrome
components or the flipping functions until the current itera-
tion is finished. If most flipped bits are contaminated by
noise, completing these updates immediately can help the
algorithm to obtain a correct codeword. To achieve this
goal, we propose an improved PWBF algorithm, which is
carried out as follows.

Algorithm 2 Improved PWBF algorithm

1) Initialization

Set z =sgn(y).

Form=1, 2, ..., M,

(D Compute the syndrome component s, =

> z,. Col-

neN(m)

lect the unsatisfied check node to form g,, = {m | s, =1, m
ell, M]}.

@ Compute flipping function E, for each ne [1, N].

2) Iteration

Form=1, 2,

(DLocate a variable node n*, and send it a “flip” signal.

(@Accumulate the “flip” signal to F (n"), if F(n") =
F, (k).

) Flip the bit n".

(@) Recompute the syndrome component s, for each m e

... Mandieg,,

M(n™).

(® Modify the flipping functions of variable nodes that
participate in the checks, whose indices are contained in
M(n").

During the process of steps @)-(5), steps (D-®2) should be
suspended to make sure that they can use the newly updated
information. Such a stop-and-wait scheme is easy to be ap-
plied to various LDPC codes; however, it may result in a
slow convergence rate. We have two methods to solve the
problem. The first one is parallelism. Only one clock cycle
is needed for step @) and step (4), respectively, when a full-
y parallel scheme is applied. For a regular LDPC code, ev-
ery variable node connects to p check nodes. With p<<M,
the increase in processing elements is small. The other way
is to use the LDPC codes whose matrices H can avoid the
case that several successive check nodes contain common
components. When steps (-2 and steps 3)-(3) are carried
out as in Fig. 1(b), once a bit n" is flipped in step @), the
syndrome components s,,, whose indices are contained in
M(n"), can be recomputed. If the check node, which step
(D processes in the next phase, is not contained in M(n"),
the information updated in successive steps @-G) can be
fully passed to the remaining steps (D-Q2).

Step | Step @] -

-| Step | Step @

Step @ | Step @; Step ®

. 1. [Update the[Update E,(a)
Flip Elt checks in | of variable
n M(n*) nodes

(a)
Step @

..|Step D| Step @ | Step D

'Step @ ! Step D 1 Step & !

Flip bit Update the| Updafe E,(a)

ax | 1st check |of variable nodes

in M(n”)in the 1st check
Update the| Update E, (a)

ancheck of variable nodes|
in M(n")|in the 2nd check

Step D| Step @ -+

Update the| Update E, ()

{?‘th chec*ks of variable nodes

in M(n™)|in the p-thcheck
(b)

Fig. 1 The arrangement of the improved PWBF algorithm.

(a) Stop-and-wait scheme with parallelism; (b) Fully parallel scheme

with QC-LDPC codes

The matrix H of a QC-LDPC code is given as an array of
sparse circulants with the same size!"’. Consider the array
of b x b circulants over GF(2), which has the following
structural properties: 1) The weight of each circulant is 1;
2) No two rows have more than one 1-component in com-
mon. If we split the matrix H row-wise into several b x N
row-blocks as in Fig. 2, the two properties ensure that with-
in each row-block the bits joining in the same check do not
participate in other checks. So, within each row-block, we
can process steps (D-) and steps @3- in parallel. The
comparison of the stop-and-wait scheme and the fully paral-
lel scheme is shown in Fig. 1. Between each row-block,
however, steps (1D-(2) should be suspended for three phases,
since different row-blocks may have several common 1-com-
ponents. In the improved PWBF algorithm, steps @)-5)
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correspond to steps (D-Q2) of the PWBF algorithm. From the
view of the PWBF algorithm, the neighboring iterations are
partly performed in parallel, as shown in Fig. 3. With p<
b, the time to finish an iteration is approximately half that
of the original PWBF algorithm. So the improved PWBF al-
gorithm can achieve a higher decoding rate.

Let w,, i=1, 2, ..., K, where K is the upper-bound of
iteration numbers, be the size of s, at the beginning of each
iteration. Supposing that each step of the improved PWBF
algorithm can be finished in a clock cycle, the total cycles

K

that are needed to decode a frame are about M +2 2 w; +
i=0
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Fig.2 An example of a row-block (L = N/b)
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Fig. 3 One iteration of the improved PWBF algorithm with QC-LDPC codes

o(M) , where M denotes the time spent on the initialization
with the pipelined scheme. As for the PWBF algorithm, it
5

consumes about M +2 z w,; +0o(M) cycles for each frame.
i=0

5
At the BER of 10, z w, 1s close to 2M, which is proved
i=0

by simulations. Thus, the throughput gain through the pro-
posed decoding compared with the original decoding is 3M/
(1.8M) =1.17.

The threshold F, (k) (k=1, 2, ..., I, ) has a great im-
pact on the performance of the PWBF algorithm. A high
threshold can help correct symbols avoid being flipped;
however, sometimes it also causes error symbols to be ig-
nored. The effect of a low threshold is the opposite. For
the turbo time-scheduling, we usually choose small F (k)
as the threshold. The low thresholds accelerate the ex-
change of information between check nodes and variable
nodes. Although some correct symbols may be flipped due
to a low threshold, the influence on flipping functions of
variable nodes is slight, because each time only up to p
syndrome components are refreshed, where p is quite small
compared with M. On the other hand, they are easy to cor-
rect in the posterior iterations, since they usually have rela-
tively high reliability. Besides, as most error symbols are
easy to locate, the correct information can be utilized as
quickly as possible.

3 Simulation Results

In this section, we consider two QC-LDPC codes based
on finite fields'"” in our simulation: one is the (961, 721)
QC-LDPC with the block length N =961 and a rate of ap-
proximately 0. 75; the other one is the (8 148, 7 571) QC-
LDPC with N =8 148 and a rate of approximately 0. 93.

We evaluate the error performances of these codes deco-
ded with the following algorithms: 1) The belief propaga-
tion algorithm; 2) The offset min-sum algorithm; 3) The
PWSWRBEF algorithm; 4) The improved PWSWBF algo-

rithm; 5) The PIMWBF algorithm; 6) The improved PIM-
WBF algorithm; 7) The WBF algorithm; 8) The BF algo-
rithm. The improved PIMWBF algorithm is the PIMWBF
algorithm with the turbo scheme as shown in Fig. 1 (b).
For algorithms 1) and 6), the maximum number of itera-
tions is set to 5, and for the remaining it is set to 100.

Fig. 4 shows the performances of the (961, 721) QC-LD-
PC code with various decoding algorithms. For the offset
min-sum algorithm, the normalized factor is set to 0. 3.
F,(k) for the PWBF and the PWSWBF algorithms are set
to [10, 7, 7, 6, 5], and « is set to 1. 8. For the improved
PIMWBF algorithm and the improved PWSWBF algo-
rithm, F,(k) are set to [5, 2, 2, 2, 2], and « is set to
1.8. For the improved PWSWBF algorithm and the
PWSWRBEF algorithm, K, T are set to 0.3 and 5, respec-
tively.

1001

10-2-—=BP
—®— Min-sum
—a— Improved
PWSWBF
—— PWSWBF
| —*— Improved PIMWBF
—#*— PIMWBF
-v— WBF
10-5 —¢ BF
1 1 1 1 1 1 1 1 1 1 1 1

1
2.5 3.0 3.5 4.0 4.5 5.0 5.5

1073
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Fig. 4 Block-error performances of (961, 721) QC-LDPC

code with various decoding algorithms

According to Fig. 4, with the turbo scheme, both the
PWSWBEF algorithm and the PIMWBF algorithm obtain
better error performance compared with other algorithms.
At the block error rate of 10—, their block error rate( BER)
performances are approximate to the min-sum algorithm.
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Fig. 5 shows the performances of the (8 148, 7 571) QC-
LDPC code with various decoding algorithms. For the off-
set min-sum algorithm, the normalized parameter is set to
0.5. F,(k) for the PIMWBEF algorithm and the PWSWBF
algorithm are set to [4, 3, 3, 2, 2], and « is set to 0. 6.
For the improved PIMWBF algorithm and the improved
PWSWBF algorithm, F (k) are set to [5, 1, 1, 1, 1],
and o is set t0 0. 6. K, T are set to 0.5 and 18 for the im-
proved PIMWBF algorithm, and to 0.3, 9 for the
PWSWRBEF algorithm.
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—&- Improved
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—- WSPWBF
—%— Improved
ot El
-v- WBF
SL8BF
4.0 4.5 5.0 5.5 6.0 6.5 7.0
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|

)

Block error rate
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Fig. 5 Block-error performances of (8 148, 7 571) QC-
LDPC code with various decoding algorithms

4 Conclusion

In this paper, the improvement of the PWBF algorithm is
presented. Simulation results show that the improved
PWBF algorithm performs better than the original PWBF
algorithm. Furthermore, a higher convergence rate can be
achieved with the QC-LDPC codes and the parallel scheme
in the updating process. The cost is an increase in the pro-
cessing units. It offers an effective trade-off between the
performance of the min-sum algorithm and the complexity
of the WBF algorithm.
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