Journal of Southeast University (English Edition)

Vol.25, No.4, pp. 456 -459

Dec. 2009 ISSN 1003—7985

Min-wise hash function-based sampling
over distributed data streams

Chong Zhihong Ni Weiwei

Xu Lizhen

Lii Jianhua Xie Yinghao

(School of Computer Science and Engineering, Southeast University, Nanjing 210096, China)

Abstract: In order to avoid the redundant and inconsistent
information in distributed data streams, a sampling method based
on min-wise hash functions is designed and the practical
semantics of the union of distributed data streams is defined.
First, for each family of min-wise hash functions, the data with
the minimum hash value are selected as local samples and the
biased effect caused by frequent updates in a single data stream is
filtered out. Secondly, for the same hash function, the sample
with the minimum hash value is selected as the global sample and
the local samples are combined at the center node to filter out the
biased effect of duplicated updates. Finally, based on the
obtained uniform samples, several aggregations on the defined
semantics of the union of data streams are precisely estimated.
The results of comparison tests on synthetic and real-life data
streams demonstrate the effectiveness of this method.

Key words: data streams; aggregation; min-wise hashing

‘ x 7ith the advances in information technology, data
streams are generated in huge amounts of volume.
Examples include IP address pairs in network transmission,
detected information in sensor networks, etc. As a variant
of a data stream model, distributed data streams (DDSs)
emerge as a promising research direction in data streams'" .
Massive data streams generated by physically distributed
sources need to be processed in a distributed fashion. The
prominent feature of this model is that multiple update
streams are fed into multiple runs of an algorithm distributed
on different nodes. This setup is used in Lucent’s Interpret
Net and Cisco’s Net flow Network to monitor products'”.
In the DDS model, the aggregate statistics, such as
min(), max(), average(), and sum(), are of great inter-
est. The nature of the distributed data streams is that a large
quantity of information is flooded at a very high rate, while
only limited processing resources such as memory are avail-
able. Therefore, the computation of aggregate functions on
the union of the data streams poses a great challenge. Intui-
tively, we can maintain uniform samples of each update
stream and use the samples to estimate the aggregate func-
tion. A problem with this simple solution, however, arises.
For example, there are two distributed update streams with
some duplicate entities crossing. If each node uniformly
samples an entity with the same probability, then the proba-
bility of sampling the duplicates is doubled, which biases

Received 2009-04-14.

Biography: Chong Zhihong(1969—), male, doctor, lecturer, chongzhi-
hong@ seu. edu. cn.

Foundation items: The National Natural Science Foundation of China(No.
60973023, 60603040), the Natural Science Foundation of Southeast Uni-
versity(No. KJ2009362) .

Citation: Chong Zhihong, Ni Weiwei, Xu Lizhen, et al. Min-wise hash
function-based sampling over distributed data streams[J]. Journal of South-
east University (English Edition), 2009, 25(4): 456 —459.

the samples for the union of two update streams.

In this paper, a novel sampling technique is introduced to
obtain uniform samples with a fixed number on the union of
the update streams and to establish the coordination between
distributed samples. The sampling technique differs from
previous works'! in that this approach aims at a turnstile
model, the most general model in practice, rather than bina-
ry series. We also define a special semantics for the union
of update streams and apply it to distributed systems. Com-
bined with the min-wise hash sampling technique, it can be
applied to filter out duplicates which are ubiquitous in dis-
tributed systems. Furthermore, we provide solutions to sev-
eral important aggregate functions in distributed systems
rather than only estimating cardinality.

1 Aggregation of Union of Update Streams

The union of the update streams on two nodes N, and N, is
the union of their corresponding update vectors V, and V.
Without loss of generality, these values of the same entity
are assumed to be recorded in the same slots on different
vectors. We define the binary operations on two update vec-
tors as follows:

1) V,UYV, represents the union addition of V, and V, and
can be computed by V,[x] + V,[x] for all x.

2) V.V V, represents the union maximum of V, and V; and
can be computed by max{V [x], V,;[x]} for all x.

3) V. AV, represents the union minimum of V, and V, and
can be computed by min{V,[x], V,[x]} for all x.

For example, nodes N, and N, record the update states of
two update streams in two vectors V, = (null, 188, 288,
null), V, = (18, 199, null, 28). Then, V,UV, = (18,
199 +188, 288, 28), V,VV,=(18, 199, 288, 28), V, A
V. =(0, 188, 0, 0).

Note that the union of two vectors is still a vector. An ag-
gregate function applied to a vector can perform the opera-
tion on the values which are not null.

There are several types of queries that users or applica-
tions may pose on distributed update streams. Examples in-
clude joins"™, norm computations', and quantile estima-
tion”'. One of the most fundamental queries on data streams
is the aggregate query. In this paper, we focus on the esti-
mation of the aggregate function on the union of the update
streams. For example, for the aggregate function sum()on
the union of the two vectors V, and V;, we obtain sum(V,)
=188 +288, sum(V,) =18 +199 +28, sum(V,UV,) =18
+(199 +188) +288 +28 =sum(V,) +sum(V)), sum(V, Y,
V) =18 +199 +288 + 28 sum(V,) +sum(V,), sum(V, A
V) =0+188+0 +0zsum(V,) +sum(V)).

Subsequently, we can obtain sum (V,UV,) by sum(V))

Min-wise hash function-based sampling over distributed data streams 457

+sum(V;). However, it is not easy to compute sum(V;V
V,)or sum(V,; A V,) when the vector is too great to be main-
tained entirely on a node, let alone transmit it from one
node to another. Therefore, estimation or sampling tech-
niques are used to solve this problem. Because V,V V,; and
V, AV, have the similar properties, we focus on estimating
the aggregate functions on V.V V..

Suppose that the domain set of all entities is X whose val-
ue range is [— M/2, M/2] and reasonably assumed to be
not too great. As for the turnstile model, an update u € X x
[-M/2, M/2] in the form of (x, A)is interpreted as upda-
ting the value of the entity x by A, i.e., V.[x] =V,[x] +
A. Note that the initial value V,[x] for the entity x, which
is not yet observed, is null.

Let | V| be the number of slots which are not null. An
aggregate function g()applied to a vector V is considered as
amap g: V—R. For example, if g()is an average aggre-

gate function, then g(V) = 2 Vixl/|v

V[x] #null
the average of a vector or an update stream.

Instead of maintaining an exact vector of O(|X|) slots, it
is highly desirable to obtain a small set of samples V', in
place of V,. When these samples are combined(denoted as V/
+V’)), three problems exist as follows: 1) How to generate a
small set of samples V', of V, on each node N, fast and direct-

, which gives

ly from the raw update stream U,; 2) How to compute 2 | 4

to approximate 2 V. when a receiver node obtains multiple
sets of samples V/; 3) How to make an accurate estimation
g(Y V") for the true aggregate function g(Y V).

2 Preliminaries

A central tool in our algorithms is the min-wise hash'.
Let 7 be a randomly chosen permutation over the set X.
Then 7 is a mapping 7: X—1,2, ..., | X|. Its inverse map-
ping v ~' (i) is an entity x in X which is permuted in the po-
sition i in terms of 7.

Assuming that X, is a subset of X, the min-wise hash
h_(X,)for a given permutation 7v can be defined as h_(X,)

=min{m(x) | x e X;}. Because the ideal family of min-
wise hash functions are obtained on all permutations over X,
it requires O(| X \log X) memory, which is normally be-
yond the processing ability of most systems. Alternatively,
we can use the &£'-min-wise independent hash in a family of
hash functions H. A family of hash functions H C X—X is
called ¢'-min-wise independent if Pr,_,{h(x) <h(X)} =
1/(Y| +1)(1 +¢&") holds for any YC X and x e X - Y.
Then the property Pr,_, {h(x) =h(X,)} =1/]X,[(1 £ ¢&")
can be obtained for any x € X,.

In this algorithm, we need to estimate the number of dis-
tinct entities and directly apply several existing algo-

. 7
rithms'” .

3 Estimation on Average of Union of Update
Streams

The average of the union of update streams is estimated;
i.e., g(VV,)is estimated by g'(S V.) . where g() is the
average aggregate function, and g'() is the approximation

of g(). The algorithm processes three events as shown in
Tab. 1.

Tab.1 Algorithms for each event

Event Update event

Combination event Estimation event

Pre-condition {input u, }

sum up A for the minimum hash

Process . X .
value for each hash function

Post-condition {updated local samples}

Sum up A for each hash function with
the same minimum hash value

{collect local samples} {update global samples}
Average all samples

{updated global samples} {estimated aggregation}

1) The update event on each node N,

On each node N;, we choose ¢ min-wise hash functions
hy(), ..., h,(). For each hash function #;, a tuple VI[jl =
(m, v) is maintained, where V' [j].m =min{h;,(u,. x)},
and V/[j].v is the total update value for the entity x whose
Jj-th min-hash value is V’,[j]. m. The samples obtained at
local nodes are stored in the array V of £ tuples of the form
(m, v).

2) The combination event on the central node

When the central node obtains two sets of local samples
Viand V], the node merges them into V; + V] by selecting
the sample corresponding to the smaller min-wise hash val-
ue for the same hash function from each pair of V/[[] and
V]’. [/]. When the two min-wise hash values are equal, the
two samples are added because they are for the same entity.
For more than two local samples, the above process is re-
cursively applied.

3) The estimation event on the central node

The average function on the global samples is applied
and the estimated aggregation value is outputted.

The size of 2 V! is &, where £ is determined by Hoeff-

ding’s inequality'® .

Lemma 1 2 V! is a uniform sampling of V V,.

The error of this approach can be statistically estimated
by the theorem below.

Theorem 1 Given §>(M21n1/ 8)/(2&%) with any error
parameter ¢ and confidence parameter 5§, we can obtain
Pr{Avg(Y V)-g(VV) | <e}l=1-8if g() is an
average aggregate function.

Heoffding’s inequality and lemma 1 can deduce this theo-
rem. It is worth noting that some duplicates can be genera-
ted by a loop in the topology and this method can filter out
them easily.

4 Performance Study

Extensive experiments are conducted on a PC with 2.4
GHz CPU, 1 GB memory, running Microsoft Windows XP
Professional. The development environment is Visual C + +
6.0. The PC is used to simulate the environment of up to
1 000 nodes. Each node has a large volume of data
streams. Therefore, only a small set of samples can be
generated for each node.

458 Chong Zhihong, Ni Weiwei, Xu Lizhen, Lu Jianhua, and Xie Yinghao

Update streams and online news are generated from syn-
thetic data streams of the Zipf distribution and the Reuters
real-time data feed, respectively. The Zipf distribution is
ubiquitous in the real world and used in many experiments
for the frequency estimation of a stream. In the Zipf distri-
bution, the parameter Z controls the distribution of the fre-
quency; e.g., a high value of Z means a relatively more
skewed distribution. In this experiment, the largest number
of distinct entities possibly appearing in a Zipf stream is
fixed to be 2 x 10". Subsequently, a Zipf sequence is con-
verted into a stream of updates (x,,A,), ..., (x,,4,),....
This means that the entity x, is updated by A, at the n-th
update, where A, is randomly chosen from the domain A.
The expected value E(A) of each update is controlled by
skewing the value of A. The influence of the length L of an
update stream is also considered. A data set can be charac-
terized by these four factors. For example,
Z1.5A100E(A)10L10° denotes a stream of 10° updates with
a Zipf of 1. 5, an expected value of 10 and an update range
of 100.

The online Reuters news data contains 365 288 news sto-
ries and 100 672 866 words with duplicates. The size of the
data is 650 MB. The data set is processed by removing the
common stop-words and stemming. The resulting data set
is converted into an update stream in the same way as the
construction of a synthetic update stream.

Logically, a distributed system can be stratified into
rings based on the diffusion path of an aggregate demand.
The center of the rings is the node which initially issues the
aggregate demand. The first ring consists of the direct
neighbors of the center node. The nodes on the first ring
directly receive the aggregate demand from the center node.
The neighbors of those nodes on the first ring form the sec-
ond ring, and so on. The samples on each node are re-
versely transmitted along the demand diffusion path. Loops
and duplicates inevitably occur in some regions of the
rings. A loop can be logically identified by the appearance
of the same node(inside the dash-line confined region) on
different rings.

A small approximately min-wise independent family of
hash functions is implemented to generate £ min-wise hash
functions, where & = (M’In(1/8))/(2&°)'. The estima-
tion error rate o can be measured by o = \g() -g'0 \/
150 |.

The estimation precision is affected by four factors as fol-
lows: 1) The properties of the update streams characterized
by data parameters; 2) The underlying topology of the net-
work; 3) The configuration update on each node; 4) The
parameter & (10* as default) which determines the number of
the samples.

Changing the number of nodes from 100 to 1 000, the
error rate is fairly stable (see Fig. 1). That is, this algo-
rithm has a very stable performance in cases with a varying
number of nodes.

We compare our algorithm, denoted as H-sampling,
with the coordinated sampling!”, denoted as C-sampling
for the two-node case with 10’ and 10* samples. To study
the influence of the duplicates on the estimation in the dis-
tributed systems, some entities are allocated to more than
one node. The percentage of duplicates varies from 0% to

80

710 hash functions
60 | B 10* hash functions

Error rate/ %
S
T

0 1 1 1 1
0 200 400 600 800 1000
Number of nodes
Fig. 1 Number of nodes vs. error rate for estimating average

functions

1001 EE H-sampling
1 C-sampling
80
3
3 60y
[
- of
=
20H
ol
80 100
Percentage of duplicate/ %
(a)
1001 EE H-sampling
1 C-sampling
80 H]
R
3607
[
=
£
20H
ol N

0 20 40 60 8 100
Percentage of duplicate/ %

(b)
Fig.2 Comparison between H-sampling and C-sampling.
(a) 10° hash functions; (b) 10* hash functions

100% with an interval of 20% . The testing results are
shown in Fig. 2.

It can be seen that H-sampling has a lower error rate than
that of C-sampling. The estimation of C-sampling is always
less than the exact average because some updates are
skipped before they are sampled. However, the estimation
of H-sampling fluctuates around the exact average. The er-
ror rate of C-sampling does not change much with the num-
ber of samples because no matter how many samples there
may be, some updates are always missed before they are
sampled. Nevertheless, H-sampling can greatly improve
the estimation quality with more samples.

This algorithm is also applied to the Reuters online news
messages. First, the online news is converted to form an
update stream. The number of min-wise hash functions ¢ is
set to be 10°, much less than the default value 10*. Then
the same piece of news is randomly allocated to the config-
urations with 10 to 20 nodes, which can simulate the dupli-
cate effect. The duplicates are ubiquitous in distributed sys-
tems such as P2P where multiple peers have the same piece
of information. The testing results are shown in Tab. 2. It
can be seen that this algorithm can achieve a low error rate
even with a Zipf parameter of 2. Neither the number of du-

Min-wise hash function-based sampling over distributed data streams

459

plicates nor the number of nodes can change the resulting
estimation error.
Tab.2 Real streams with 10’ hash functions

Node Average Estimation Error/ % Time/s
100 215. 68 181.23 16. 08 54
200 222.57 234.56 5.14 152
500 244.75 234.56 4.39 376

1 000 267. 14 272.13 1.82 758

5 Conclusion

The fundamental problem of how to obtain uniform sam-
ples over distributed update streams is studied. Based on
the min-wise hash functions, we maintain a fixed number
of uniform samples on each node, and merge them to form
uniform samples over the union of the update streams. This
algorithm is robust in the presence of various physical and
logical configurations in terms of the number of nodes,
rings, loops and duplicates. Its error rate is small even if
only a small set of samples are generated. The experiments
on synthetic and real-life data sets show that this algorithm
can always obtain uniform samples of the union of distribu-
ted update streams, which leads to more accurate estima-
tions of aggregate functions than previous approaches.

References

[1] Gibbons P B, Tirthapura S. Estimating simple functions on

the union of data streams [C]//Annual ACM Symposium on
Parallel Algorithms and Architectures. Crete Island,
Greece, 2001: 281 —290.
Ganguly S, Garofalakis M, Rastogi R. Processing set ex-
pressions over continuous update streams [C]//Proceedings
of the ACM SIGMOD International Conference on Manage-
ment of Data. San Diego, CA, USA, 2003: 265 —276.
[3] Ganguly S, Garofalakis M, Kumar A, et al. Join-distinct
aggregate estimation over update streams [C]//Proceedings
of the ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems. Baltimore, Maryland, USA,
2005: 259 —270.
[4] Indyk P. Stable distributions, pseudorandom generators,
embeddings and data stream computation [C]//Annual
Symposium on Foundations of Computer Science Proceed-
ings. New York, NY, USA, 2000: 189 —197.
Gilbert A C, Kotidis Y, Muthuukrishnan S, et al. How to
summarize the universe: dynamic maintenance of quantiles
[C]// Proceedings of the 28th Annual International Confer-
ence on Very Large Data Bases. Hong Kong, China, 2002:
454 —465.
Broder A Z, Charikar M, Frieze A M, et al. Min-wise in-
dependent permutations [C]//Conference Proceedings of
the Annual ACM Symposium on Theory of Computing. Dal-
las, Texas, USA, 1998: 327 —336.
Flajolet P, Martin G N. Probabilistic counting algorithms
for data base applications [J]. Journal of Computer and
System Sciences, 1985, 31(2): 182 —209.
[8] Hoeffding W. Probability inequalities for sums of bounded
random variables [J]. Journal of the American Statistical
Association, 1963, 58(1): 13 —30.

[2

—

[5

—_—

[6

—

[7

—

SRR LEE T Min-wise 815! 05 £ B K £

A
',%‘IUJZ\

st Bitd HEE

(RaRFHANHAFSE T255%, dF 210096)

R L5

WE: A0 A REAT ALY TR TR - LR, BT —F KT Min-wise #5] 69 R 3, FELT
B 5 % SR oA AR RGBS, B R, 3T A — 3% Min-wise #0313k B A s B AE 69 SLAE AR A
FIERAEA, JETREANRIER T QIR E B AT R AT B, RJE, TR BRI T EHARL AR R
DI FAR A R FA, ZRRAFFEREE T ST LG EIF, BRAESH T B L0 E 5 L33 AR
M.)E, AARFHHORAE, ESARBATHEL EAAETRERMGME KA TALZRKEFL
T FHE 09 2T YL AR IS ISR T % 7 k09 R Ak

XEEF: HIEAR; BE; Min-wise #7)

RE 5 ES: TP392

