Journal of Southeast University (English Edition)

Vol. 25, No.4, pp. 468 —472

Dec. 2009 ISSN 1003—7985

Task-oriented web service discovery algorithm
using semantic similarity for adaptive service composition

Wen Junhao'?

Jiang Zhuo'

Tu Liyun® He Pan'

(' College of Computer Science, Chongqing University, Chongging 400030, China)

(* College of Software Engineering, Chongging University, Chongqing 400030, China)

Abstract: In order to achieve adaptive and efficient service
composition, a task-oriented algorithm for discovering services is
proposed. The traditional process of service composition is
divided into semantic discovery and functional matching and
makes tasks be operation objects. Semantic similarity is used to
discover services matching a specific task and then generate a
corresponding task-oriented web service composition (TWC)
graph. Moreover, an algorithm for the new service is designed to
update the TWC. The approach is applied to the composition
model, in which the TWC is searched to obtain an optimal path
and the final service composition is output. Also, the model can
implement real-time updating with changing environments.
Experimental results demonstrate the feasibility and effectiveness
of the algorithm and indicate that the maximum searching radius
can be set to 2 to achieve an equilibrium point of quality and
quantity.

Key words: web service; service composition; service discovery;
ontology; semantic similarity

eb service composition is the process of discovering,

‘ V combining and executing existing services to establish
reusable and versatile interoperability application'. As the
key technology, service discovery directly affects the quality
of service composition. But the variability of requests, as
well as the uncertainty and instability of the external serv-
ices', forbid precise predictions from service providers
about the outcomes of service composition. On account of
the deficiency of service discovery, service composition
cannot achieve self-adaptation and self-optimization when
faced with changing environments.

Researches dealing with service discovery in composition
have been on the way. A self-healing service composition is
proposed, which is realized by process description, monito-
ring and recovery strategies'” . Transforming the composite
services dependability maintenance problem to an adaptive
control problem can present a dependable and adaptive ap-
proach™ . A service composition with high quality and good
performance can be realized by the optimized genetic algo-
rithm"™™® based on the QoS. Besides, taking ontology and
semantic similarity as the basic tool to discover services on
the web has become a consensus among many research-

Received 2009-06-30.

Biography: Wen Junhao(1969—), male, doctor, professor, jhwen@ cqu.
edu. cn.

Foundation items: The National Key Technology R&D Program of China
during the 11th Five-Year Plan Period(No. 2007BAF23B0302), the Major
Research Plan of the National Natural Science Foundation of China(No.
90818028) .

Citation: Wen Junhao, Jiang Zhuo, Tu Liyun, et al. Task-oriented web
service discovery algorithm using semantic similarity for adaptive service
composition[J]. Journal of Southeast University (English Edition), 2009,
25(4): 468 —472.

ers”". However, one problem, that of taking all of the

available services as operation objects takes too much time
and cannot deal with changes in the environment quickly
enough, still needs to be solved.

The approach proposed in this paper divides the process
of service composition into semantic discovery and function-
al matching and takes tasks as operation objects. An algo-
rithm is designed to make use of semantic features to discov-
er services matching a given task and generate corresponding
TWC graphs. After that, the TWC is searched to obtain the
final service composition.

1 Ontology-Based Semantic Similarity

Ontology, as the basis of the semantic web, is an ap-
proach of conceptualization and modeling of domain knowl-
edge which can be used to describe the semantic information
of data. There are several language describing ontologies,
such as simple HTML ontology extension(SHOE), XML-
based ontology-exchange language (XOL), RDF, RDF-S
and the OWL standard with recommendations from W3C.
Based on OWL rules, the definition of a domain ontology is
proposed as follows'"" .

Definition 1 Domain ontology is defined as

Ont={(C, R, H, rel, A)

where C is the set of concepts, including the interpretation
of the ontology, the definition of properties and the method
of the ontology; R is the set of relations; H is the conceptu-
al level of the ontology in the ontological tree structure; rel
represents the relationships between concepts; A represents
ontology axioms.

In this way, the similarity between the entities is conver-
ted to the semantic similarity between concepts. In order to
calculate the similarity more accurately, the ontology weight
associated with the parent node is introduced in the corre-
sponding concept hierarchy tree (CHT).

Definition 2 For child nodes Ont, belonging to Ont, i =
1, 2, ..., nand R, should include at least the following in-
formation,

R, = < parentOnt, parW,, Parwf* >

where parentOnt is the parent node; parW, is the weight of
all the child-nodes belonging to parentOnt, which reflects
the similarity degree between Ont, and parentOnt, and

Z parW, =1 . We can normalize the weight by parW, " =
i=1

parW,/max(parW,) .
To be precise, the weight parW,” reflects the difference of
similarity degree between the same parent and different chil-

Task-oriented web service discovery algorithm using semantic similarity for adaptive service composition

469

dren. For example, “Hard Disk” and “CD” both can be the
children of “Memory”. But when talking about “Memory”,
apparently we refer to “Hard Disk” instead of “CD”, which
suggests that the weight of the former is larger than that of
the latter. The weight can be calculated, for example, ac-
cording to frequency of use in the context, which can be ob-
tained from the WordNet'"”' as well as the Chinese WordNet
supported by Southeast University.

The calculation method of similarity between concepts is
proposed in Refs. [11, 13]. Based on the analysis above, a
light-weight form of the method is presented as follows:

simDegree(C,, C,) =

C, #C,

(1, +1, =2al)ymax(|1, -1,], 1)
1 C1=C2

L - partW, - parW,
{ (D

where 0<a<1; [, and [, are the levels of C, and C,; L is
the level of the lowest common parent-node of C, and C, in
the concept hierarchy tree,

l C, is parent of C, (2)

Level of the lowest common parent

l C, is parent of C, or C, =C,
L= {
else

As shown in Eq. (1), taking no account of parW, the
lower of the common parent of two concepts is in the con-
cept hierarchy tree, the more similar the two concepts are.
In Fig. 1, for example, if o =0.5, then simDegree (Ci,
C,) =0.5 and simDegree(C,, C,) =0.2, where C,, C,
and C, are in the same level. Since the level of the common
parent of C; and C; is lower than that of C, and C,, the two
of the former are more similar to each other.

Fig. 1 Concept hierarchy tree

In order to take advantage of semantic similarity in serv-
ice composition, we need to define the similarity calculation
method of multiple concepts composition. If there is a com-
bination, CA=(C,, C,, ..., C,) and CB =C,,,, the simi-
larity degree between them is simDegree (CA, CB) =

k-1

H simDegree (C,, C,,,) .

i=0
2 Task-Oriented Web Service Discovery Algorithm
2.1 Overall approach

The concept of “task” is introduced to optimize the serv-

ice composition and realize the adaptive capacity. With the
given tasks, the registered services are abstracted to the task
layer based on the semantic similarity degree, generating the
corresponding TWC graph. After that, we just need to
search the generated TWC to find a QoS optimal path with
functional matching as the composition result. TWC also
can be updated adaptively when there are invalid services or
new services.

2.2 Algorithm design

A registered service entity should include the most basic
information of function description and interface descrip-
tion. Based on the domain ontology, a service can be ab-
stracted to an entity only containing output and input.
Therefore, matching of services can be abstracted to match-
ing of concepts which are related to I/0 interfaces of serv-
ices. Moreover, the concept of task can be introduced to the
web service'* ™.

Definition 3 Task represents specific functions and busi-
ness processes in some area, and it is achieved by one or a
group of web services together. t={I, O), where [and O
are the input and the output, respectively.

Definition 4 Let the services composition path be WS =
(WS, (1,, 0)), WS, (1,, 0,), ..., WS,(I,, O,)), task be
Task(I', O'), similarity of the input and output threshold be
S, and the composition similarity threshold is S . If sim-
Degree(1,, I')=S,, ", simDegree(0,, O') =S,,", simDe-
gree(0,, I.,,) =S, " and simDegree(WT, Task) =S_.",
then WS is considered to match Task(/', O'), where i=1,
I<k<i-1.

Through the calculation of the semantic similarity, serv-
ices can be matched to tasks and abstracted to the logic lay-
er. The mapping relationship is shown in Fig. 2, where the
task layer is just the generated TWC graph.

In Fig. 2, web service request, WSR(/, O), can be divid-
ed into three interdependent tasks. According to the semantic
similarity of concepts, we can obtain the set of candidate
services for each task through mapping all the operational
services to corresponding tasks. In addition, the figure in-
forms that, WS6 can independently accomplish Task 1, while
WSI1 and WS2 are required to be executed in sequence to
achieve the same task; WS3 can independently accomplish
both Task 2 and Task 3 simultaneously. While searching the
path in the follow-up composition, we take WS3 as two dif-
ferent services and set the distance between them as 0.

Task layer
(TWC graph)

Application
layer

SOAP
client

Other

client

JAVA NET
client client

Fig.2 Overview of mapping model

470

Wen Junhao, Jiang Zhuo, Tu Liyun, and He Pan

Therefore, under the premise of ascertained tasks, a glob-
al traversal search for all the matching services or service
compositions is required to generate TWC. However, the
similarity between the composition and the task and the val-
ue of other QoS attributes will decrease when the service
composition path becomes longer. So a maximum searching
radius L, is set to limit the searching radius. The value of
L. should be based on the actual situation to make a bal-
ance between time complexity of the algorithm and the re-
call rate. In the following example of the algorithm, the
searching radius is 2, which means that the length of the
service composition path matching Task(/', O')is less than
2.

Before giving the algorithm, it is necessary to propose the
definition of similarity matrix.

Definition 5 Similarity matrix of the set of services
{WS.(I;, O)} can be defined as A = (a;) where a, =
simDegree(0;, L).

Algorithm 1 Match services to task(MSTT)

Input: Similarity threshold of input and output: S,,";

ixi?

similarity threshold of composition: S:; set of available
services: {WS,(I;, O})} and Task(I', O'); similarity ma-
trix of {WS,(I;, O;)}and Task(I', 0'): A; row and col-
umn number of tasks in A: 7, f,.

Output: Set of services matching to the task: WT.
1 Initialize WT =, k=1, next step;
2 IfA(t, k) > =S, go to step 4; else next step;
3 k=k+1; ifk> =1 &&k< =i, goto step 2; else go to
step 10;
4 If A(k, t,) > =S,,, next step; else go to step 6;
5 IfS=A(t,, k)A(k, t,) > =S5, add (S, WS,)to WT;
go to step 3;
6 j=1; next step;
7 If A(k, j) > =S, go to step 9; else next step;
8 j=j+1;ifj> =1 &&j< =i, go to step 7; else go to
step 3;
9 IfA(J, t,) > =S, && S =A(1,, k)A(k, HA(j, t,) >
=8¢, add wt=(S, WS,, WS,)to WT; go to step 8;
10 Return to WT

Steps 1 to 5 search for any independent services WS,
matching Task, and steps 6 to 9 for any composition of
services in the space of radius 2. The MSTT can commend-
ably handle the situation, as shown in Fig. 2, and WSI and
WS2 are required to be linked together in sequence to match
Task 1. In addition, another algorithm, namely match tasks
to service(MTTS), which can deal with the situation that
WS3 independently accomplishes both Task 2 and Task 3
simultaneously, should be designed. The idea is basically
the same as the MSTT, so we do not repeat it here.

In fact, a global search is only executed when a large
number of services are invalid or when the system is updated
regularly. When a new service is registered, the search al-
gorithm should only be aiming at the new one to ensure the
real-time update. The algorithm of matching a new service
to task is as follows.

Algorithm 2 Match new service to task(MNSTT)

Input: Sg; Se; {WS,(I;, 0))}; Task(I', 0Y); A; t,,
t,; new service NWS(I, O)).

Output: WT.

1 If simDegree(l,, I') > =S}, next step; else go to step
8;
2 If simDegree(O;, O') > =S, next step; else k=1, go
to step 4;
3 If S =simDegree(I,, I') simDegree(O;,, O') > =8¢,
add (S, NWS)to WT; step 12.
4 If simDegree(O;, I;) > =S,,, g0 to step 6; else next;
5 k=k+1; if k> =1 & &k < =i, next step; else step
12.
6 If A(k, t,) > =S8, next; else go to step 5;
7 If S =simDegree(I;, I') simDegree(O, I,)A(k, t,) >
=8¢, add wt=(S, NWS, WS,)to WT; go to step 5;
8 If simDegree(O, O') > =Sy, j=1, next step; else
step 12.
9 IfA(z, j) > =S, go tostep 11; else next;
10 j=j+1;ifj> =1 &&j< =i, gotostep9; else step
12.
11 If S=A(t,, j)simDegree(O;°, I,’)simDegree(O,, O")
> = 8. && simDegree (O,’, I,) > =S, add wt = (S,
WS,, NWS)to WT; go to step 10;
12 Return to WT.

Steps 1 to 3 check whether NWS independently matches
Task, and the remaining steps discover whether any compo-
sition of services matches Task and contains NWS.

2.3 Adaptive service composition model

Based on the above algorithm, we can discover a set of
candidates from the available services to match a certain
task. If the discovery algorithm is executed for all the given
tasks, we can obtain the TWC graph, and ensure the real-
time update.

As shown in Fig. 3, this approach can adaptively respond
to the environmental changes. The main task of functional
composition and allocation is performed by the adaptive path
selection model(APSM) .

Service
provider

Set of available

services

Composition
solution

Success
result

Service ||
requester

Fig. 3 Adaptive service composition model

1) After TWC is generated, the APSM calls the path
search algorithm, such as the genetic algorithm”™, to con-
firm the optimal composition path. The basic method is to

enumerate all the available paths and find the optimal one

Task-oriented web service discovery algorithm using semantic similarity for adaptive service composition 471

with several weights of similarity and other QoS.

2) Send the composition solution to service execution. If
there is information about invalid service WS, execute step
3).

3) Find out the task Task* according to WS, and the cor-
responding set of candidates, WT, from TWC. If there are
still enough available services in WT, take out an approxi-
mate optimal service instead to generate a new solution and
execute step 2); if the number of candidates is less than a
given minimum value, execute step 4).

4) Invoke MSTT/MTTS to update TWC, if necessary,
with decreasing S,,, S. or increasing L, .

3 Experiment and Analysis

We designed experiments to test the execution efficiency
and the success rate of the MSTT and the MNSTT. The al-
gorithms have been implemented in Matlab 7. 8. All the ex-
periments are conducted in a hardware configuration with an
AMD Turion 64 x2, 1.9 GHz CPU and a 2 GB RAM.

The experimental data originated from pizzas. owl version
1. 5 published by Manchester University. The concept hier-
archy tree is generated according to the relational description
in the food domain, and parW, is calculated based on the
word frequency provided in WordNet. We randomly select
concepts of ontology from the generated domain ontology
database as input and output of the service to obtain the test
service dataset. Similarity matrix A is calculated according
to definition 5.

Obviously, with a greater similarity threshold, the com-
position result of the algorithm matches the user’s request
better. On the other hand, in order to clearly show the
differences between the experimental results, the experiment
should not be too fine-grained. Therefore, we set threshold
S0 =S5, =0.9 and execute the MSTT algorithm with differ-
ent L . And the experiment selects three random groups of
datasets as the test data, records the computing time and
matching results, and takes the average value as the final re-
sult. The MNSTT algorithm with L =2 is also tested
while comparing the computing time.

Fig. 4 shows the comparison of computing time when L
varies from 1 to 4. “MNSTT with radius 2” represents the

cost time of the MNSTT algorithm with L = 2. From
Fig. 4, we can see that the greater the L is, the more time
the MSTT takes; while for the MNSTT with L =2, the

time cost is obviously less than that using the MSTT under
the same conditions. For example, supposing that L =2,
105 —>— Radius 1
- -+ - Radius 2
= —v— Radius 3
I —®— Radius 4
—— MNSTT with
radius 2

g

g

D

8

g 10°

-5 .

® P

=] —

] 10?

£

© 101 a4 B, "
100 L L 1 1 |

100 200 300 400 500
Number of WS

Fig. 4 Variation in computing time cost

the number of web services is 500, the time cost using the
MNSTT is 6.9 ms while it is 15. 6 ms using the MSTT.
Fig. 5 shows the quantity of the successful matching re-
sults with different L _, when the number of web services is
from 50 to 500. The experimental results indicate that when
L. issetto 1, we often obtain only little or no service mat-

ches. However, with the increase in searching radius, the
number of successful matches is dramatically increased.

2

[Radius 1
[Radius 2
[Radius 3
Il Radius 4

2

2

O

Number of successful matches

0 100 200 300 400 500
Number of WS
Fig. 5 Variation in successful matches

Some conclusions can be drawn from the experimental re-
sults:

1) The computing time and the number of the successful
matches are proportional to the maximum searching radius
L,.. The greater L is, the more time it costs, and the
number of the successful matches increases. However, with
the increase of L the global similarity of service compo-
sition is decreased, so are the values of some QoS attrib-
utes, such as network delay. So, it is meaningless to infi-
nitely increase L, to obtain more matching results. In fact,
the experimental results show that when L_, is set to 2, the
results are satisfactory enough. Consequently, L, =2 can
be an equilibrium point of quality and quantity.

2) Given the same service scale and searching radius, the
time of the MNSTT algorithm is obviously lower than that
of the MSTT algorithm. When a new service is registered,
there is no need to refresh the whole TWC and we only need
to search this new registered service. With the MNSTT, we
not only implement real-time updating but also save time
and resources.

max *

m:

4 Conclusion

We present a task-oriented discovery algorithm and apply
it to web service composition. Compared with the current
composition model, the model we proposed divides the
process into two phases: simplify the operation objects and
make the composition efficient and flexible. This approach
achieves self-adaptation and self-optimization when faced
with changing environments. The simulation results show
that the algorithm is feasible and effective and can meet the
actual requirements. However, this paper does not put great
stress on the algorithm of the automatic division of task and
the algorithm for searching the optimal path based on TWC.
This will be the emphasis of our future work.

References

[1] Qiu Lirong, Shi Zhongzhi, Lin Fen, et al. Agent-based au-
tomatic composition of semantic web services [J]. Journal

472

Wen Junhao, Jiang Zhuo, Tu Liyun, and He Pan

of Computer Research and Development, 2007, 44(4): 643
—650. (in Chinese)

[2] Mei Lijun, Chan W K, Tse T H. An adaptive service selec-
tion approach to service composition [C]//IEEE Internation-
al Conference on Web Services. Beijing, China, 2008: 70 —
77.

[3] Guinea S. Self-healing web service compositions [C]//The
27th International Conference on Software Engineering.
Saint Louis, MO, USA, 2005: 655.

[4] Guo Huipeng, Huai Jinpeng, Deng Ting, et al. A dependa-

ble and adaptive approach to supporting web service compo-

sition [J]. Chinese Journal of Computers, 2008, 31(8):

1434 —1444. (in Chinese)

Ai Lifeng, Tang Maolin. QoS-based web service composi-

tion accommodating inter-service dependencies using mini-

mal-conflict hill-climbing repair genetic algorithm [C]//Pro-
ceedings of the Fourth IEEE International Conference on

eScience. Indianapolis, IN, USA, 2008: 119 —126.

[6] Yang Lei, Dai Yu, Zhang Bin, et al. Dynamic selection of
composite web services based on a genetic algorithm opti-
mized new structured neural network [C]//Proceedings of
the 2005 International Conference on Cyberworlds. Singa-
pore, 2005: 515 —522.

[7] Buford J, Brown A, Kolberg M. Meta service discovery
[Cl// Proceedings of the Fourth IEEE International Confer-
ence on Pervasive Computing and Communications Work-
shops (PERCOMW’06) . Pisa, Italy, 2006: 129 —134.

[8] Feng Zaiwen, He Keqing, Li Bing, et al. Method for se-

[5

—

mantic web service discovery based on context inference [J].
Chinese Journal of Computers, 2008, 31(8): 1354 —1363.
(in Chinese)

[9] Wu Chen, Chang E, Aitken A. An empirical approach for
semantic web services discovery [C]//Proceedings of the
Australian Software Engineering Conference. Perth, WA,
Australia, 2008: 412 —421.

[10] Shi Bin, Wang Haiyang, Cui Lizhen, et al. Service compo-
sition algorithm using semantic constraint to implement user
personality [J]. Journal of Southeast University: English
Edition, 2008, 24(3): 365 —368.

[11] Li Man, Wang Dazhi, Du Xiaoyong, et al. Dynamic com-
position of web services based on domain ontology [J]. Chi-
nese Journal of Computers, 2005, 28(4): 644 —650. (in
Chinese)

[12] Fellbaum C. WordNet: an electronic lexical database| M] .
MIT Press, 1998.

[13] Wu Jian, Wu Zhaohui, Li Ying, et al. Web service discov-
ery based on ontology and similarity of words [J]. Chinese
Journal of Computers, 2005, 28(4): 595 —602. (in Chi-
nese)

[14] Shang Zongmin, Cui Lizhen, Wang Haiyang, et al. Re-
search on exception handling of composite services based on
compensation business process graph[J]. Chinese Journal of
Computers, 2008, 31(8): 1478 —1490. (in Chinese)

[15] Sirin E, Parsia B, Wu D, et al. HTN planning for web serv-
ice composition using SHOP2[J]. Journal of Web Seman-
tics, 2004, 1(4): 377 —396.

BENRZFEAAGPFETEXHEUERARNESHRSZRAEE

A

S 1,2
AR

AW AT B!

("ERKRFIEAFE R, £k 400030)
CERREHRMETREER, €K 400030)

HE: AT EAAE R Zae) Web IRE44, BET —H@@ES0IRSZAT X, FERGRS LT
X9 Hy & L L6 R A Sy i Loy IR B, FERAESAE AR R, AR E SRR AR LIRS+ F K5 452405
AR B e IR S-, JF AR 69 TWC B, Bl B4 S 37 IR 433 B4 Sk, Himr i m AR R FaeA F, i
& TWC B33 — & R G BARAE A RS- 20628 R sk, SF A R IR - K AR 52) 69 237 4 TR IR 5 7h
K. FHERIENT HEN TR R, CEAAERREEFLRR2 6, REXEFRREZE TA-F

#r

KRR Web JIR4; RG24 IRE-RIL; Ak, &AM

HES %S TP331

