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Abstract: In order to better achieve knowledge sharing based on
distributed ontologies, an approach based on ontology context
immigration ( OCI') is proposed. Compared with traditional
approaches such as ontology integration and mapping, the
proposed approach can reduce the implementation complexity.
This approach can be mainly divided into three phases: ontology
context determination for a given term, ontology semantic
similarity computation between ontology terms, and ontology
context immigration. As for a local semantic term based on
distributed ontologies, an appropriate ontology context of the
term is determined and extracted from a local ontology most
associated with the term by wusing semantic similarity
computation. Then, the ontology context is dynamically
immigrated to the source ontology for enriching semantic
information related to the term. A system called distributed
knowledge sharing system( DKSS) is developed to illustrate this
approach. The system adopts multi-agent technology for better
communication and coordination between different ontology
information sources. The experimental results show that it is
efficient for distributed ontology knowledge sharing. The
proposed approach does not require the support of a global
ontology or the maintenance of complex ontology mapping
relations, and thus it has better maintainability and scalability.
Key words: ontology; knowledge sharing; ontology context;
multi-agent system

vironments has attracted much attention in recent. As
the core of the semantic web'", ontologies have been adopt-
ed as the conceptual backbone of enterprise application re-
quirements. There is a tendency that distributed ontologies
will become more dynamic rather than static because of re-
quirement changes. It is inevitable to lead to a large number
of semantic heterogeneities between distributed ontologies.
This will impede knowledge sharing of distributed ontolo-
gies. For efficient knowledge sharing of distributed ontolo-
gies, ontology integration and mapping methods are widely
adopted”™. The ontology integration method commonly
depends on a global ontology that contains the reproduction
of semantic terms of all distributed ontologies. This method
is time-consuming and manually made. However, as the
global ontology must be correspondingly updated and main-
tained in accord with the changes of local ontologies, it will
lead to poor maintainability and scalability of the whole dis-
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tributed knowledge system. In contrast, ontology mapping
does not require the global ontology but needs to create se-
mantic mapping relations between different semantic terms.
This method thoroughly considers the dynamic characteris-
tics of distributed ontologies, but it also has to maintain
complex ontology mapping relations. Furthermore, the se-
mantic query process based on ontology mapping will great-
ly increase the reasoning complexity of the distributed
knowledge system.

This paper proposes a novel approach for distributed on-
tology knowledge sharing based on ontology context immi-
gration( OCI). When there are semantic terms requiring se-
mantic context in a local ontology, this approach first calcu-
lates the semantic similarities between them and the terms in
other local ontologies, and creates ontology mapping rela-
tions between associated semantic terms. In order to achieve
ontology interoperability between two local ontologies, the
ontology context( OC) of a given term will be determined
and extracted from a local ontology most associated with the
term. Then, these OCs will be dynamically immigrated to
the source ontology for enriching semantic information relat-
ed to the term. A system called the distributed knowledge
sharing system ( DKSS) is developed to illustrate this ap-
proach.

1 Ontology Knowledge Representation

Ontology was introduced into computer science by the ar-
tificial intelligence community to describe data and knowl-
edge representation models which are conceptually inde-
pendent of specific applications. The ontology representa-
tions in some web ontology languages, such as RDF and
OWL, can be translated into a set of triples of the form (7,
R, T'), where T and T’ represent the terms(e. g., classes,
properties or individuals), and R represents a binary relation
between terms. Ontology languages provide some entail-
ment rules for semantic reasoning. In addition, some tool-
kits such as Jena' and query languages such as RDQL'"
can be used to program ontology applications and perform
semantic queries based on these applications.

2 Ontology Context Immigration
2.1 OCI elements

In distributed environments, domain ontologies are com-
monly developed separately by different developers, and
each of them describes a partial knowledge of the whole do-
main of interest. In order to achieve ontology knowledge
sharing based on the whole distributed system, these ontolo-
gies must cooperate for a given information query. Specific-
ally speaking, we need to eliminate the semantic heteroge-
neities between terms of ontologies as much as possible, and
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make the shared knowledge more relevant. In this case, we
propose an approach called ontology context immigration.
The ontological context of a given term is the set of ele-
ments of all possible superclasses ( superproperties), sub-
classes ( subproperties) and individuals most semantically re-
lated to the term, which can be generally regarded as a sub-
ontology of the ontology in which the term is defined.

Fig. 1 shows three domain ontologies(i. e., ontologies
A, B and C)that are respectively maintained in three differ-
ent agents. Ontology A imports semantic term B4 originally
defined in ontology B. Ontology B imports term A4 origi-
nally defined in ontology A. Ontology C imports terms A3
and B2 that are defined in ontology A and ontology B, re-
spectively. In ontology A, the imported term B4 has no
more semantic information. Term B4 has more semantic in-
formation hidden in its super- or sub-relations in ontologies
A and B. Therefore, based on ontology A, if an agent exe-
cutes a semantic query containing term B4, then the agent
probably needs to know more information about B4. Thus,
it will request the OC of B4 from ontology B. According to
the request, the agent of ontology B will extract the OC of
B4 from ontology B, and further immigrate the information
to the agent of ontology A.

Ontology A

Ontology B

Ontology B
imports term
A4 from
ontology A

Term originally
defined
in ontology A

in ontology B

gAgent C
Fig. 1 Knowledge sharing of ontologies

In addition, each agent in the distributed system not only
can request remote OC information but can also respond and
provide its own ontology knowledge to other remote agents.
Moreover, the interaction among agents in the whole dis-
tributed system does not depend on any middle entity(e. g. ,
a mediation server). That is, each agent can request OC in-
formation from other agents. At the same time, it also can
make responses to OC requests of other agents and immi-
grate the corresponding OC information to other agents.
Considering such a system architecture, to add an agent into
or remove it from the distributed system will not cause fail-
ures of the whole system. Therefore, this system has better
capabilities of maintainability and scalability.

2.2 Ontology context determination

In order to determine the ontology context of a given
term, some issues should be considered. If the term has
been defined in some ontology, we directly extract and ob-
tain the semantic context of the term from the ontology. If it
is not explicitly defined in other ontologies, we need to
compute the semantic similarities'™ between the given term

and the terms in other ontologies. We will find the most se-
mantically relevant term for the given term. Then we can
establish the mapping relationship between them. The onto-
logical context of the most relevant term will be extracted
and further immigrated to the agent maintaining the given
term.
2.2.1 Semantic similarity computation

As described above, when a semantic query refers to ex-
ternal terms and wants to know more semantic information
about these terms, the immigration of the OC will be auto-
matically performed. However, there probably exists a large
number of semantic heterogeneities among distributed ontol-
ogies. For example, a semantic term “cat” may be defined
as “pussycat” in another ontology, “coach” and “drillmas-
ter” may be used in different domain ontologies for the same
or similar meanings. In this situation, if a semantic query
involves the external term “cat” but cannot find the exact
matching term in other ontologies, it is necessary for the
query agent to import the OC of “pussycat” so as that the
system can also achieve ideal query answering. Because the
semantic term of “cat” and “pussycat” has higher similarity,
it is obvious that more satisfiable query results will be re-
turned if the term “cat” is replaced with “pussycat”, in ad-
dition to the ontology context of term. In order to calculate
the similarity between semantic terms, we adopt two kinds
of similarity methods: syntax similarity and semantic simi-
larity. Syntax similarity is defined as the string matching de-
gree of term names. This paper adopts the Levenshtein
method" for syntax similarity calculations. Semantic simi-
larity is defined as the semantic matching degree of different
terms. Semantic similarity can be measured by semantic dis-
tance between different semantic terms. In this paper, we
first use the WordNet to calculate the semantic distance be-
tween two adjacent nodes. The semantic similarity between
any two nodes is defined as follows:

D, +D,
¢ +DC‘ +D, +2D

SemSim(c,, ¢;) = Z w

eeplc, c) LCA

where

eep(y ¢)
the shortest path between nodes ¢, and ¢;, and p(c;, c;) re-
fers the shortest path between nodes ¢, and ¢;. D, and D, re-
present the weighed distance of ¢, and c; to their shortest
common ancestor, respectively. D, ., represents the weighed
distance from this shortest common ancestor to the root. Re-
lying on semantic distance, we define the semantic similari-
ty. The ultimate similarity is as follows:

w, represents the sum of weighed distances in

Sim(c;, ¢;) =kSynSim(c;, ¢;) +(1 -k)SemSim(c,, c;)

where SynSim(c;, c;) is the syntax similarity calculated by
the Levenshtein method. % is a coefficient in [0, 1], which
can be used to appropriately adjust the weight of syntax sim-
ilarity and semantic similarity. This paper takes k =1/3 for
similarity computation.
2.2.2 OC immigration

By similarity computation, the system can figure out
which is the most similar term in distributed ontologies. The
following task is to determine the OC of the most similar
term. We take Fig.2 as an example to illustrate our ap-
proach.
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In Fig. 2, ontology B imports term A4 that is originally
defined in ontology A(or A4 in ontology B is an external
term and is most similar to the term A4 defined in ontology
B by similarity computation). At this time, the super terms
of Ad(i.e., A2, A6 and Al), the sub terms of A4(i.e.,
A5 and A7), and the relationships among them, as well as
the total semantic information about A4, will be used to de-
termine the semantic context of A4. Specifically speaking,
if a local semantic query based on ontology B involves a
term A4 that is directly imported from other ontologies or an
external term obtained by similarity computation, then the
ontology context of the term will be dynamically extracted
from ontology A and immigrated to agent B. The enriched
ontology B will help users find more relevant semantic re-
sults.

Ontology A Legends
6 S (Al Y ~<— is-a (super-sub)
=~ __!: - relation
(A2 7 Q (O Tems defined in
T o ontologies
@ (A4 Q —~ Terms related to
P S S-S T A4 (OC of A4)
(A7 7 (A5 ~—~ Imports external
g Agent A g Agent B semantic terms

Fig. 2 Ontology context
2.3 System architecture

The prototype of the DKSS based on ontology immigra-
tion is developed by using multi-agent technology. Fig.3
shows a skeleton of the system architecture. The system cur-
rently consists of three agents. Of course, it can be extend-
ed and probably contains more ontology agents. In the cur-
rent DKSS system, each agent contains three key compo-
nents: LocalSemanticQuery, SimilarityComputation and
OCExtraction. Component LocalSemanticQuery executes lo-
cal semantic query and reasoning. When the query involves
external semantic terms and needs to immigrate the OC of
those terms, component SimilarityComputation will be in-
voked to figure out which semantic terms in the distributed
system are the most similar ones. The subcomponent Re-
questModule will be invoked to request the OC of those
terms from remote agents. The subcomponent Response-
Module responds to the remote request. Component OCEx-
traction extracts certain OC depending on the requests. In
the end, the subcomponent ResponseModule will sends
these OCs to the remote request agents. For example, a se-
mantic query based on agent B may refer to some external
terms that are most similar to those terms defined in agent A
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Fig. 3  Architecture of DKSS

or agent C. At this time, SimilarityComputation of agent B
will be invoked to compute the most similar terms in agent
A and agent C, and then RequestModule will be executed to
request OCs of these similar terms. If agent B and agent C
contain the request information, their OCExtraction compo-
nents will dynamically extract the OCs from local ontologies
and send them to agent B by RequestModule. Agent A and
agent C are similar.

3 Experiments and Evaluation
3.1 Datasets and experimental index

Three domain ontologies such as Faulty, Department and
Student are developed by using the Protégé tool"” and fur-
ther used as our experimental datasets. The Faculty ontology
consists of 59 classes and many properties and individuals.
It includes contents about the staff at a university such as ti-
tle, departments that they work for, research areas, students
and courses, etc. Ontologies Department and Student con-
sist of more than 120 terms, and describes the semantic
knowledge about departments and students, respectively.

In this paper, we apply three indices to our experimental
evaluations. Precision, Recall and ResponseTime are de-
fined as follows:

1) Precision
Precision =

| RelevantInformation N RetrievedInformation |

100%
[ {RetrievedInformation } X AP0

2)Recall

| RetrievedInformation |

Recall = : :
| U information \
s,eS o

x 100%

where RetrievedInformation refers to the set of total infor-
mation retrieved. RelevantInformation refers to the set of all
relevant information existing in all given sources. Relevant-
Information N RetrievedInformation represents the set of rel-
evant information retrieved. U information, represents the

s;eS
summation of information contained in all datasets.

3) ResponseTime

The index ResponseTime is defined as the time interval
from the beginning of semantic queries to the return of query
results. Its time unit is in milliseconds. In fact, the Respon-
seTime in this paper can be regarded as the sum of network
communication time, OC extraction and loading time, and
semantic query transformation and semantic reasoning time.

3.2 Data analysis and settings

The comparisons of Precision, Recall and ResponseTime
between the OCI model and the non-OCI model are shown
in Fig. 4 and Fig.5. Where F, S and D represent datasets
Faculty, Student and Department, respectively; FS, FD,
SD and FSD represent the possible combinations of these
three datasets.

100

% %0 'M
8 60 —&— Precision( OCI model)

s —4— Precision(non-OCI model)

5 40 —B— Recall (OCI model)

:g 20 —>— Recall (non-OCI model)
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F S D FS FD SD
Datasets
Fig. 4 Comparisons of precision and recall
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Fig. 5 Comparisons of ResponseTime

Fig. 4 shows the comparisons of precision and recall adop-
ting the OCI model and the non-OCI model along with the
increased volume of datasets. As for the precision, we find
that precision values have a continual descent based on the
two models. However, we observe that the precision values
based on the non-OCI model has a smaller drop compared
with that based on the OCI model. Furthermore, the preci-
sion values of the former are higher than those of the latter.
As for the recall, we find that recall values have a continual
ascent based on the two models. However, we observe that
the recall value based on the OCI model has a smaller drop
compared with that based on the non-OCI model. Further-
more, the recall values of the former are lower than those of
the latter. The reasons are probably because immigration of
ontology contexts causes more restrictive query conditions.
In this situation, the retrieved results are relevantly reduced,
which makes the query results more semantically relevant to
a certain extent. In Fig.5, we can observe an obvious in-
crease in response time value. But relevantly speaking, the
method adopting the OCI model is significantly lower than
that adopting the non-OCI model with the increased volume
of datasets. The reason is probably because the semantic
queries based on the OCI model just need to load the OC in-
formation rather than the whole ontology information. This
leads to a shorter response time for semantic queries.

4 Conclusion

In this paper, we propose a novel approach based on the
OCI for knowledge sharing of distributed ontologies. A se-
mantic context of a given term can be regarded as a subonto-
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logy of the ontology in which the term is defined. By
specifying an appropriate ontology context for the given
term, we can eliminate semantic heterogeneity between rele-
vant semantic terms of distributed ontologies. The prelimi-
nary experimental results show that this approach is effective
and efficient for knowledge sharing of distributed ontolo-
gies. This approach does not require the support of a global
ontology or the maintenance of complex ontology mapping
relations, and thus has better maintainability and scalability.
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