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Abstract: In order to overcome the shortcomings that the
reconstructed spectral reflectance may be negative when using the
classic principal component analysis ( PCA) to reduce the
dimensions of the multi-spectral data, a nonnegative constrained
principal component analysis method is proposed to construct a
low-dimensional multi-spectral space and accomplish the
conversion between the new constructed space and the multi-
spectral space. First, the reason behind the negative data is
analyzed and a nonnegative constraint is imposed on the classic
PCA. Then a set of nonnegative linear independence weight
vectors of principal components is obtained, by which a low-
dimensional space is constructed. Finally, a nonlinear
optimization technique is used to determine the projection vectors
of the high-dimensional multi-spectral data in the constructed
space. Experimental results show that the proposed method can
keep the reconstructed spectral data in [0, 1]. The precision of
the space created by the proposed method is equivalent to or even
higher than that by the PCA.
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ulti-spectral images are those whose pixel values are
M the spectral reflectance of source scenes. They are
mainly used for the accurate and consistent color reproduc-
tions of source scenes under different illuminants. Now they
have been widely used in high-end imaging fields such as art
archiving' ™', tele-medicine"” ™, and military target ima-
ging.

Multi-spectral images are acquired by narrow-band
sampling in the range of visible light, e. g., from 400 to
700 nm. This results in a high dimension of image data.
When the images are reproduced by hardcopy devices, high
dimension will lead to high computational complexity, large
storage space and long computing time during color map-
ping, device color space transforming and color calibrating.
Moreover, because the number of channels of the output de-
vices are far less than the dimension of the image data, the
color gamut mapping is almost impossible to be accom-
plished during color management. Therefore, constructing a
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low-dimensional space, then transforming the multi-spectral
data to it and handling the images in it become the key tech-
nologies in multi-spectral image reproduction.

When constructing a low-dimensional space, two princi-
ples must be followed. First, the constructed space and the
multi-spectral space can be converted to each other. The
spectral reflectance reconstructed from the low-dimensional
space must have physical significance. That is, it must be in
[0, 1]. Secondly, the dimension of the space must be ap-
propriate for the establishment of a look-up table. Creating a
look-up table is a common method to solve the computing
bottleneck in image reproduction. Whereas the size of the
look-up table is exponential to the input dimensions, so the
dimension of the constructed space must be fit for establish-
ing and searching in the look-up table.

Several methods have been used to construct the low-di-
mensional spectral space, including principal component
analysis( PCA) "™ Karhunen-Loeve transformation'”™ and
LabPQR" ™. They are all developed from the PCA theory
and can reduce the dimension of spectral data to 6 to 8.
Whereas when reconstructing high-dimensional data from
the low-dimensional, the data usually exceed the range of
[0, 1], which is meaningless because the spectral reflec-
tance is the ratio of the reflected radiant flux to the incident.
This leads to the problem that some color management func-
tions cannot be achieved correctly, e. g. image screen
proofing. To solve this problem, a nonnegative constrained
principal component analysis( NCPCA) method is presented
in this paper. It makes the reconstructed spectral reflectance
in [0, 1], which holds the physical significance of the spec-
tral reflectance. At the same time it can achieve the preci-
sion equivalent to the classic PCA.

1 Principal Component Analysis

The main idea behind the PCA is to project multidimen-
sional data to a low-dimensional space while holding the va-
riance of the source data as great as possible. We assume
that S is a P x N matrix and represents a set of spectral re-
flectance samples. It has N sample vectors with P dimen-
sions each. The PCA is used to obtain a linear combination
C of the source data that makes the variance of C be as great
as possible. C is denoted as

C=d"'$ (1)
The variance of C can be described as
var(C) =var(a'S) =a'a (2)

where 3' is the covariance matrix of the source data and is
represented as
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By Eq. (2), obtaining the maximum of var(C)is conver-
ted to calculate the maximum of the quadratic form a"Ya.
The maximum problem is expressed as

max var(C) =a'Ja 4
s.t. a'a=1

To solve the maximum problem in Eq. (4), the following
Lagrange multipliers technique is used,

max L(a, A) =a'3a+A(1 -a"a) (5)
We obtain aia(aTEa +A(l -a"a)) =3a - Aa =0, then

Sa=\a (6)

From Eq. (6) we can see that finding the answer of Eq.
(5) is converted to obtain the eigenvalues (A,, A,, ..., A,)
and eigenvectors (a,, a,, ...,a,) of 3, where A\, =A,=...
A, >0 are all non-zero eigenvalues of 3 and r = rank(Y).
Now a, is the weight vector that makes var( C) the largest
and is defined as the first principal component loading. a,
makes var(C) the second largest and is defined as the sec-
ond principal component loading. Followed by analogy, a
is the r-th principal component loading.

Given V=[a, a, a,], the multi-spectral data can
be projected to the eigenvector space by

r

c=V'S (7)

On the other hand, the multi-spectral data can be recon-
structed from the eigenvector space by

A

S=vcC (8)
where § is the reconstructed spectra of .

2 Method of Constructing Low-Dimensional Space
Using NCPCA

By the analysis of the above PCA theory, the properties
using the PCA to reduce the spectral data dimension can be
explained as follows:

Property 1 From Eq. (3), we know that 3’ is a sym-
metric and nonnegative matrix. All its eigenvalues are non-
negative and the eigenvectors are orthogonal to each other.
So there is only one nonnegative eigenvector at most. This
leads to the fact that the reconstructed spectra using Eq. (8)
cannot always be nonnegative and lose their physical signifi-
cance.

Property 2 The premise of the conversion between the
multi-spectral space and the low-dimensional space using
Eq. (7)and Eq. (8)is that transformation matrix V must be
orthogonal, that is, v'=Vv".

2.1 Non-negative constrained principal component
analysis

To solve the problem caused by using the classic PCA to
reduce the spectral data dimension, a nonnegative constraint
is imposed on the maximum problem in Eq. (4),

max var(C) =a'Ja 9

s.t. a'a=1 a=0

From the PCA theory, we know that the first principal
component should make var( C) the greatest and represent
the most information of the source data. Assuming that a, is
the first principal component loading, the first principal
component ¢, is obtained by Eq. (1). Hence a,c, is the
most important approximation of the source spectra. Then

§V=8"-ac, (10)
represents the residual information, where S© =8 is the
source data. Computing the covariance matrix 3, of §'" and
putting it into Eq. (9), we obtain the first principal compo-
nent loading a, of S"”. Then by Eq. (1) we obtain ¢,. So
a,c, is the most important approximation of §'" and is the
second approximation of $'”. Repeat the above process, and
an iteration is obtained,

§7=8""-ac, (11)

Using Eq. (11) to calculate ' in turn, computing ¥,
and then putting them into Eq. (9), we obtain all the princi-
pal component loadings of S. The most important property
of the loadings obtained is that they are all nonnegative.

The solution of the maximum problem in Eq. (9) cannot
be converted to solve the eigenvalues and eigenvectors of the
covariance matrix because the nonnegative constraint exists.
But Eq. (9) is an optimization in itself. It can be solved by
a nonlinear optimization. In this paper, the Newton method
is utilized.

Through the above process and by r iterations of Eq. (9)
and Eq. (10), a set of nonnegative vectors can be obtained.
We denote them as V' =[a, a, ... a,]. Then the best ap-
proximation of § is calculated by

,
S = Z{aici

This shows that if using V' as the base vector group, the
source data can be expressed as a linear combination of V'.
Moreover, because V' is a nonnegative vector group, we
can obtain the best nonnegative approximation of the source
data if the coefficient (¢, c,, ..., ¢,) is chosen appropriate-
ly. So the following problem is formed,

(12)

min ¢ = ||§ —SH; = HS - ﬁaic"Hj (13)
i=1

Solving the nonlinear optimization in Eq. (13), a set of
coefficients (¢,, ¢,, ..., ¢,) is obtained. Then putting them
into Eq. (12), the approximation 8 of S is obtained. Obvi-
ously § is nonnegative. Therefore, by using V’ to span an
r-dimensional space, the conversion from the multi-spectral
data to the r-dimensional space is achieved by Eq. (13). On
the other hand, given (¢,, ¢,, ..., ¢,), high-dimensional
spectral data can be reconstructed from the r-dimensional
space by Eq. (12). The reconstructed data has the physical
significance of the spectral reflectance, and can be used as
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the approximation of the source data. During this conver-
sion, V' need not be orthogonal because of the utilization of
the nonlinear optimization. So the conversion between the
spaces uses Eq. (12) and Eq. (13) instead of Eq. (7) and
Eq. (8). In Eq. (9)and Eq. (13), the convergence condi-
tion is set as || Vvar(C) | <10™*, || Va | <10 and
| Vel <107, || Ve || <10°°in the experiment. They
can be set as other values according to the application.

2.2 Steps of creating low-dimensional space using NCPCA

Secondly, the data in the low-dimensional space should
reflect the information in the source data as much as possi-
ble. The variance contribution rates can express the informa-
tion rates reflected by each principal component. When the
accumulative variance contribution rates of the first K princi-
ple component reach a certain percentage, the contribution
of the K to P principal components can be ignored. The
equation of variance contribution rates and accumulative va-
riance contribution rates are as follows:

1) Choose a set of representative spectral samples as the R, =2/ z A (14)
source data; =

2) Use Eq. (9)and Eq. (11)to obtain the nonnegative vec- L8,
tor group (a,, a,, ..., a,) from the samples in step 1); R = Z M/Z A (15)

3) Exploit the vector group produced by step 2) to con-
struct a k-dimensional space, where k is less than the dimen-
sion of the spectral data. The k-dimensional space is the
very space that can be served as the fixed low-dimensional
space.

4) For any multi-spectral image, its data can be converted
to the fixed k-dimensional space by Eq. (13), and its ap-
proximation can be reconstructed from the k-dimensional
space by Eq. (12).

2.3 Dimension of low-dimensional space

When determining the dimension of the space, two factors
should be taken into account. First, the size of the look-up
table should be feasible. The relationship of the space dimen-
sion and the size of the look-up table are shown in Tab. 1,
assuming that the output dimension is six and the output
bands are 1 byte each. As shown in Tab. 1, when the input
dimension is more than 9, the establishing and searching in a
look-up table are almost impossible to achieve.

Tab.1 Relationship of input dimension and size of look-up table

where A is the variance calculated by Eq. (9).
3 Experiments

In the experiment, the spectral reflectance of the color
patch IT8. 7/3 is utilized as the base samples. IT8.7/3 is a
standard print target and commonly used in color print re-
production experiments. It has 928 color samples. The non-
negative vector group is produced by these samples and is
utilized to construct the low-dimensional space. The spectral
reflectance of the base samples is sampled from 400 to 700
nm at 10 nm intervals. The dimension of the data is 31.
Tab. 2 shows the variance contribution rates using the classic
PCA and NCPCA respectively to reduce the dimension of
the base samples. As shown in Tab. 2, for the same num-
bers of the principal components, although the represented
information using PCA is slightly larger than using NCPCA,
the accumulative variance contribution rates using NCPCA
still reach a high level.

By the analysis of Tab. 1 and Tab. 2, the six-dimensional
space is chosen as the low-dimensional space. The look-up

Input Sampling numbers Output Size of look-up
dimension in each dimension dimension table/GB table based on this space is appropriate in size and favorable
3 17 6 30 %10 -6 in storage and search. Moreover, the accumulative variance
6 17 6 145 x 10 -3 contribution rates of the first six principal components reach
9 17 6 700 99% . So they can represent the information of the source
31 17 6 8 x10% data well.
Tab. 2 Variance contribution rates using classic PCA and NCPCA
Method  Variable Cy ¢ 3 Cy Cs Cq ¢y cg Co
Variance 1.079 2 0.245 6 0.118 1 0.014 8 0.003 9 0.002 7 0.001 3 0.000 8 0. 000 1
PCA VCR 0.7359 0.167 4 0.080 5 0.010 1 0.002 7 0.001 8 0. 000 8 0.000 5 0. 000 1
AVCR 0.7359 0.903 3 0.983 8 0.993 9 0. 996 6 0.998 4 0.999 2 0.999 7 0.999 8
Variance 1.079 2 0.1390 0.122 1 0.097 2 0.008 4 0.008 1 0.004 3 0.002 2 0.001 9
NCPCA VCR 0.736 6 0.094 9 0.083 3 0. 066 3 0.005 7 0.005 6 0.003 0 0.001 5 0. 000 8
AVCR 0.736 6 0.8315 0.914 8 0.981 1 0.986 8 0.992 4 0.995 4 0.996 9 0.997 7

Note: VCR means variance contribution rates and AVCR means accumulative variance contribution rates.

The six-dimensional space is constructed by the PCA and
the NCPCA, respectively. The spectral reflectance of
IT8. 7/3 is reconstructed from the space. Their curves are
shown in Fig. 1. From Fig. 1 we can see that negative data
appear using the PCA. This results in meaningless spectra.
Yet the data produced by the NCPCA is in [0, 1]. They
can be used as the approximation of the source spectra.
Tab. 3 shows the precision of the low-dimensional space
constructed by two methods, where the normalized PCA

means that the reconstructed data using the PCA is normal-
ized in [0, 1]. The spectral precision is evaluated by the
root mean square error Eg,' ', and the colorimetric preci-
sion by the standard CIELAB color difference equation
AE, under a typical illuminant. From Tab. 3 we know the
precision using the PCA is slightly higher than using the
NCPCA when the dimension of the space is the same. This
is caused by the fact that the eigenvectors of the PCA are
orthogonal and that of the NCPCA are only linearly inde-
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pendent. In addition, the process of the PCA is linear, yet
the NCPCA is affected by the convergence precision of the
optimization. Nevertheless, the precision of the PCA and
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the NCPCA is very close. This shows that the NCPCA can
be used as a low-dimensional space construction method.
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Fig. 1 Spectral reflectance curve of IT8. 7/3. (a)Source data; (b)Reconstructed data using PCA; (c¢) Reconstructed data using NCPCA

Tab.3 Precision of the low dimensional space using the three methods

AE,, (D65, 2°observer) Erms
Method Mean Standard deviation ~ Min Max Mean Standard deviation ~ Min Max
PCA 0.1202 0.1327 0. 000 6 0.9759 0.002 4 0.001 1 0.000 7 0. 006 8
PCA( normalized) 0.697 8 0.664 9 0.025 8 4.2273 0.003 6 0.001 6 0.000 9 0.016 5
NCPCA 0.151 8 0.211 8 0.000 8 1.237 17 0.002 6 0.002 2 0.000 5 0.010 3

Two multi-spectral images are used as the test images.
They are converted to the space constructed by the samples
of IT8. 7/3, and then reconstructed from the space. Both
the images are sampled in 400 to 700 nm at 10 nm inter-
vals. The RGB images synthesized from the multi-spectral
images are shown in Fig. 2. Fig. 2 (a) is a typical skin im-
age and Fig. 2(b)is a scene picture with high color satura-
tion. Tab. 4 shows the conversion precision of the two ima-
ges.

(a) (b)

Fig. 2 RGB images synthesized from multi-spectral images.
(a) Young-girl; (b)Fruits-and-flowers

Tab.4 Conversion precision of the two images
using the two methods

AE, (D65, 2°observer) Erums
Image Method Standard Standard
Mean .. Mean .

deviation deviation

. PCA 0.1199 0.062 9 0.010 4 0.007 8
Fig. 2(a)

NCPCA 0.078 9 0.062 0 0.003 2 0. 000 9

. PCA 1.3299 1.307 4 0.016 9 0.007 7
Fig. 2(b)

NCPCA 1.586 3 1.217 5 0.010 7 0. 008 6

As shown in Tab. 4, the NCPCA can reach the close pre-
cision of the classic PCA. Sometimes the accuracy is even
higher than that of the PCA. Since the image of fruits-and-
flowers has a large amount of color with high saturation and
the color exceeds the gamut of the IT8. 7/3, its precision is

lower than that of the young-girl. This shows that choosing
appropriate base samples to construct the low-dimensional
space is crucial for improving the accuracy of the space
conversion.

4 Conclusion

An NCPCA method is presented in this paper aiming at
constructing a low-dimensional space. By imposing a non-
negative constraint on the classic PCA, it can limit the re-
constructed data into the range of [0, 1]. By using a non-
linear optimization, it can obtain the transformation matrix
between the high and low dimension spaces. Experiments
show that the proposed method not only holds the physical
significance of spectral reflectance, but also has a close ac-
curacy with the classic PCA. Moreover, the idea of the
NCPCA can be applied to the occasions of dimension re-
duction and feature extraction where the analysis results
need to be nonnegative. How to choose reasonable base
spectral samples needs further investigation.
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