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Abstract: In order to simulate the real growing process, a new
type of knowledge network growth mechanism based on local
world connectivity is constructed. By the mean-field method,
theoretical prediction of the degree distribution of the knowledge
network is given, which is verified by Matlab simulations. When
the new added node’s local world size is very small, the degree
distribution of the knowledge network approximately has the
property of scale-free. When the new added node’s local world
size is not very small, the degree distribution transforms from
pure power-law to the power-law with an exponential tailing.
And the scale-free index increases as the number of new added
edges decreases and the tunable parameters increase. Finally,
comparisons of some knowledge indices in knowledge networks
generated by the local world mechanism and the global
mechanism are given. In the long run, compared with the global
mechanism, the local world mechanism leads the average
knowledge levels to slower growth and brings homogenous
phenomena.
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etwork structure is of vital importance in the topologi-
Ncal characterization of complex systems in reality'' '
It has been observed recently that the distribution of several
components in real growing networks, such as the Internet,
metabolic network, and social network, has a power-law
form"™",

Many generating mechanisms have been proposed to ex-
plain this phenomenon. Barabasi and Albert"” proposed an
evolving network model in order to mimic the growing
process of the real complex network. The Barabasi-Albert
model considers two fundamental mechanisms: growth and
preferential attachment( PA), which capture the basic mech-
anism responsible for the power-law degree distribution.
The effect of the PA is that nodes which already have many
edges connecting to them will derive even more edges. This
indicates the rich get richer scenario.

However the Barabdsi-Albert model has some limitations.
For example, it only predicts a fixed exponent in the power-
law degree distribution, and the preferential attachment
works on the global network. There are many generaliza-
tions and extensions of the PA mechanism to overcome these
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limitations, usually with additional features such as adding
links using nonlinear PA' , rewiring!”’, removal', fitness
of nodes'’, link weights'” and local-world linking'"'™*'.

Recently, the study of the knowledge network has been
an attractive issue. Some academic literature has presented
that many factors affect knowledge innovation such as the
properties of the network structure'” """

In this paper, we model the formation of the knowledge
network in which the new coming enterprise is not only
based on the existing enterprises’ connectivity but also on
the correlation degree between the coming one and the exist-
ing ones in choosing cooperators to innovate together,
which is much closer to reality. Moreover, we know the
fact that in many real-world networks, the connection of
nodes is usually limited due to various kinds of physical
constraints, which may have a non-negligible impact on the
characteristics of the network'™. For instance, the global
preferential attachment mechanism does not work for the
world trade web, an enterprise usually pays its attention to a
subset of correlated ones in the network but not on the
whole'”’. When a node is added into the knowledge net-
work, the newly added node will not be able or willing to
obtain the global information about the network, and what it
obtains usually is relevant to itself, i.e. local world mecha-
nism.

Besides the local world mechanism, we slightly modify
the original preferential attachment mechanism, i.e, adding
the tunable parameters to each node’s degree. Generally,
the tunable parameter remains unvaried, and usually it is
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equal to zero in much of the literature' n

1 Generation Model

Let S =5{1,2, ..., N} denote a finite set of knowledge-
based enterprises, the scale of which evolves over time. For
any i, je S, we define the binary variable y(i, j) =1 if a
connection exists between i and j, and y(i, j) =0, other-
wise. If two enterprises are willing to innovate together,
there exists a connection between the two. Each firm is
characterized by L distinct types of knowledge. We repre-
sent this as a vector of length L=2, which allows us to con-
sider each firm as located at a point in knowledge space.

Suppose that at time ¢, node i and node j pool their
knowledge together in order to innovate, where je I',, I
={j ‘X( i, j) =1,jeS}. Then in the next timestep, each
element of node i’s knowledge level can be written as

ty1+a 1y
c(V, (v,)"”
v;[ﬂ :max{vﬁ,, max{M}} (1)

. t t
jel; VitV

where «;, Q; denote node i and node j’s innovation ability in
collaboration, and c is the coefficient of innovation.
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The knowledge correlation degree between any two enter-
prises at time ¢ is defined by

-1/2

T = (Z(v -’ ) (2)

where i, jeS; v, denotes the [-th type knowledge level of
node i at time ¢.

The following is the generation algorithm of the knowl-
edge network:

1) Start with a small number m, of nodes and a small
number e, of edges;

2) According to the knowledge correlation degree between
the new coming node and any existing node, select M nodes
from the existing network, referred to the local world of the
new coming node;

3) At every timestep, we link the new node to m nodes in
its local world determined in step 2), using a preferential at-
tachment with probability I7,,.,(k,;) defined by

local

k, +a
(k +a)

J € local-world

I, (k) =II'(i e local-world) (3)

where a( =0)is a constant, and we call it the tunable pa-
rameter; local-world refers to all the nodes in which the new
coming node has interest in period ¢.

After ¢ timesteps the model leads to a network with N =1t
+ m, nodes and mt + ¢, edges. The new coming node con-
nects to m nodes, which are selected from its local world ac-
cording to the knowledge correlation degree, but it does not
choose from the whole system as in the Barabasi-Albert
scale-free model. If M(t) =m, +t, it means that the local
world is the same as the whole network; i. e., the global
world is the local world’s special case. When M(t) =m, +1
and a =0, the model simplifies to the original Barabdsi-Al-
bert model.

2 Network Analysis
2.1 Theoretical prediction of degree distribution

Owing to the random generation of each existing node’s
initial knowledge level and new coming node’s knowledge
level, the probability that node i is selected into the new
coming node’s local world is approximately equal to M/ (m,
+1t). Hence Eq. (3) can be written as

M k. +a
Hlocal(ki) = (4)
my +1 (k, +a)

J e local-world

We assume that k is continuous'', and thus the probabili-
ty Il (k;) can be interpreted as a continuous rate of
change of k;. Consequently, from Eq. (4) we can obtain

ok, M k, +a
= mlT, . (k) = — (5)
ot my, +1t (k, +a)

J e local-world

To simplify the following analysis, we assume that

(k, +a) = ({k;) +a)M (6)

J e local-world

where the average degree is

2mt +2e,

(k) =——7 (7)

my +t
From formulae (5) to (7), we obtain

a(k, +a) m(k; +a) m(k, +a)
ot 2mt+2e,+a(m, +1) (2m+a)t

The solution of this equation, with the initial condition
that node i is added to the system at time ¢, with degree
k(t) =m, is

m/(2m + a)

k,.(t)=(m+a)(t%) —a (8)

Using Eq. (8), the probability that a node has a degree
k.(t) <k, P(k,(t) <k), can be written as

2m+a)/m

P(k,(t)<k)=P(t,.>(’Z:Z) t) 9)

Assuming that we add nodes at equal time intervals to the
system, the probability density of ¢, is

1

(1) “m, 1
0

Then from Eq. (9), we obtain

m+a
P(ti>(k+a)

The probability density of P(k) can be obtained by

m+ a)(2m+a)/mt

m, +1t

(2m+a)/m

aP(k(1) <k)

Pk = ok

~(2 +£)(m+a)2+“/'"(k+a) ~(3+a/m)
m

ie., P(k) ~A(k +a), where A = (2+%)(m +

2+a/m a
=3+—.
a) , Y + .
So in the limit of large ¢, the degree distribution of the
knowledge network follows a power-law.

2.2 Numerical simulations of degree distribution

Here we give the numerical simulations of the degree dis-
tribution P(k). In all numerical simulations, «;, L, c are
equal to 1, 2, 3, respectively and the initializing network
has three nodes no matter whether they are connected or
not. At each timestep, a new node is added into the net-
work.

Fig. 1 describes P(k) in the case of the same number of
new added edges (m =2)and the same tunable parameter (a
=1) but different local world sizes (M,, M,), where

M, (1) :max{M(t—l), [4(’"057”)]} M,(t) =3, [] e

presents integral function.

As shown in Fig. 1, this network evolves into a scale-in-
variant state, and the probability that a vertex has k edges
follows a power law. Although the local world size is not
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equal, the scaling exponent is nearly unchanged and approa-
ches the theoretical coefficient in both two cases.
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Fig. 1 Degree distribution of local world knowledge networks
with different local world sizes M in logarithmic scales

We also find that the number of nodes having more edges
is much more when the local world size is larger. This is
because the nodes in the network can obtain more opportuni-
ties to connect with the new node when the new node’s local
world size is larger.

3 Parameter Analysis
3.1 Number of new added edges

Fig. 2 compares P(k) in the case of the same local world
size (M =3)and the same tunable parameter (a = 1) but dif-
ferent numbers of new added edges (m,, m,), where m, =1
and m, =2. We can see that the simulation results almost
approach the theoretical prediction and the scaling exponent
is dependent on m. Furthermore, the scaling exponent de-
creases as m increases.
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Fig. 2 Degree distribution of local world knowledge net-

works with different numbers of new added edges m in loga-
rithmic scales

3.2 Tunable parameter

In Fig. 3, we compare P(k) in the case of the same local
world size (M (t) =M, (t)) and the same number of new
added edges(m =2) but different tunable parameters a, and
a,, where a, =1, a, =4. We can see that the scaling expo-
nent is dependent on a and increases as a increases.

In all, the degree distribution P(k) shown in Figs. 1, 2
and 3 is as a function of the node degree k. From the fig-
ures, we can see that the majority of nodes approximately
have the same number of connections and the number of

wor
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Fig.3 Degree distribution of local world knowledge networks
with different tunable parameters a in logarithmic scales

very highly connected nodes is very small. Sometimes the
degree distribution P(k) of this network changes no longer
pure scale-free but is truncated by an exponential tail. Note
that the theoretical predictions in Figs. 1 and 2 do not strictly
have linear properties. The reason is that we suppose that a
=1, not a =0.

4 Comparisons of Local World Mechanism and
Global Mechanism

In this section, we compare the average knowledge levels
and the variances in knowledge allocation in two connection
mechanisms. One is local world and the other is global. We
know that the global mechanism is a special case of the local
world one, which brings some conveniences in simulation.
First we give some definitions as follows.

Agent i’s average knowledge level in period ¢ is v, =
( Y v, )/L . The average level of knowledge in the network

1
in period 7 is v(7) = ( 2 v!)/N and the variance in knowl-

ieS

edge allocation is

> (v =w(n)’ v

2 _ ies _ ies
o (1) = N TN

-V (1)

Fig. 4 and Fig. 5 show some index comparisons generated
by the local world mechanism and the global mechanism.
From Fig. 4, we can see that the average knowledge level
generated by the local world mechanism is greater than the
global mechanism at the very start, and then the trend chan-
ges. With time increasing, this gap expands. However, lit-
tle change in the variances in knowledge allocation is gener-
ated by the local world mechanism, which is advantageous
to network formation but leads the network to become ho-
mogenous.

1.11 —— Local world mechanism

| —— Global mechanism

Average knowledge level

o4 . . . . .
0 10 20 30 40 50 60 70 80 90 100
Timestep
Fig. 4 Average knowledge levels in two mechanisms
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Fig. 5 Variances in knowledge allocation in two mechanisms
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5 Conclusion

In this paper, we propose an evolving knowledge network
model based on the Barab4si-Albert mechanism and the local
world mechanism to investigate the effects of the local world
size, the tunable parameter and the number of new added
edges on the knowledge network structure. It is found that
the knowledge network generated by the mechanisms we
give has the property of scale-free. When the number of
new added edges decreases or the tunable parameter increa-
ses, the scaling exponent increases. We also find that the
global mechanism increases average knowledge levels and
variances of knowledge allocation in the knowledge network
compared with the local world mechanism. High variances
of knowledge allocation in the network can cause heteroge-
neity and lead the network to collapse because of inequity.
In reality, a majority of networks have such properties, for
example, enterprises involved in the world trade web.
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