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Abstract: The existence of high energy periodic solutions for the
second-order Hamiltonian system —idi(?) + A(t)u(t) = VF(¢,
u(t)) with convex and concave nonlinearities is studied, where
F(t,u) =F,(t,u) + F,(t,u). Under the condition that F is an
even functional, infinitely many solutions for it are obtained by
the variant fountain theorem. The result is a complement for
some known ones in the critical point theory.

Key words: variant fountain theorem; second-order Hamiltonian
system; infinitely periodic solutions; even functional

Consider the following second-order Hamiltonian sys-
tems:

—ii(t)+A(t)u(t)=VF(t,u(t))} (1)

u(0) —u(T) =u(0) —u(T) =0

where A ( ) is a continuous, symmetric, positive definite
matrix. We denote by(, ) and || - || , the usual L? inner prod-
uct and L” norm, respectively.

In previous years, the existence and multiplicity of T-pe-
riodic solutions for system (1) have been extensively studied
by means of the critical point theory. And many results have
been obtained based on various hypotheses on A and F,
which we refer to below.

When A =0 and F is convex, the existence problem is
completely solved(see Ref.[1]). In the case that A =0 and
F is sublinear, sub-quadratic or super-quadratic, some re-
sults have been obtained in Refs. [2 —7]. In the case that
A(+) is a continuous symmetric matrix and F satisfies dif-
ferent conditions, many results have been obtained in Refs.
[8—9].

In this paper, we deal with the existence problem of infi-
nitely many 7-periodic solutions of system (1) under the as-
sumption that F(¢,x) is an even functional of x, i.e. F(t,
-x) =F(1,x), xeR".

The proof of the existence of high energy solutions(i. e.
the symmetric mountain pass theorem) is based on the
(P. S.)condition and the fountain theorem(see Ref. [10]).

We denote C as the various positive constants whose exact
values are irrelevant.

1 Main Theorem

Assume that F = F| + F, and F satisfies the following con-
ditions:

1) F;: [0,T] x R"—R is measurable in ¢ for every x e
R" and continuously differentiable in x for a.e.te [0, T];
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. VF(5,x)
lim ———
| x |50 ‘x‘
=0 for all x e R".

2) | VF (t,%)|<c(l+ |x
all x e RY, where p >2.

.. VF(t,x)x
3) ll‘mdnf‘i

=0 uniformly for a.e.t€[0,T]; VF,(t,x)x

?~!y for a.e.re [0, T] and

z = C > 0 uniformly for x € R”,
x

where g >?2 is a constant.

4) F, e C([0,T] xRY,R), and there exist o, 5§ e (1,2),
¢,>0,¢,>0,c, >0 such that ¢, |x|"< VF,(t, x)x <
¢, |x|” +¢c,|x|° fora.e.te[0,T] and all x e R".

5) % V F(t,x)x - F(t,x) is a nondecreasing function of

x for x, >0 and a.e.re [0, T], where x = {x, x,, ..., x,}.
6) F(t,x) is even of x for xe R" and a.e. 1[0, T].
Remark 1 In view of condition 3), F(t,x) is of super-

quadratic growth as |x|— o, which is weaker than the

global A-R condition. There are many results on the exist-
ence of T-periodic solutions for system (1) under super
quadratic and other stronger conditions(see Ref. [10]). The
global A-R condition ensures the boundedness of (P. S. ) se-
quences of the corresponding functional. But in this paper,
we use the variant fountain theorem in Ref. [7], and can be
free from this stronger condition when studying the existence
of infinitely many periodic solutions.

Theorem 1  Suppose that A(7) e C([0, T], R")is a
symmetric positive definite matrix. And assume that condi-
tions 1)to 6) hold. Then system (1) has infinitely many so-

. e 1"
lutions {u, } satisfying ?fo( “ik > + A1) ‘”k |>)dr -

T
| Frxydr— was ke .

0

Remark 2 The following example satisfies the condi-
tions of theorem 1. F(t,u) =F, (t,u) + F,(t, u) with
VF (t,u) =puln(l + lul) +clul*u and VF,(t,u) =
ulu|”?In(2 + |ul), where u >2 and o e (1,2) are con-
stants.

2 Proof of Theorem
T
Let E = {u e Hy | (li(o [ + A [u(n [Hdr <
0
% } . Then E is a Hilbert space with the inner product (u,
T
vy = [ @i, ¥(1) +(A(Du(n), v(1)drand the norm
0

2

lul|=(u,u)". Obviously, Os,éa'( —%+A(t) ).Hence,

2
* || 1S equivalent to ||« ||, en -— + t as a se-
I-11is squivalent to ||+, Then ( - $=+Acn) ) n

quence of positive eigenvalues A, with A —o, as m— .
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Let X, be the sub-space corresponding to A;,j=1,2, ...,

and X; <o, then E = éX.

Set W, = @X Z, = @X B, ={ueW,.:
={ueZ:

Since A(1) e C([O, T], RY) is a symmetric, positive
definite matrix, the embedding E—L'[0, T] for | <s< o is
compact by virtue of the 7T-periodic condition.

Consider a family of functions @, : E—R of the form

Hu||$pk} and S,
HuH Ty ’ fOIpv>’ >0.
k k

@,(w) = lulf = Af F(u(n)dr: = Iw) = AJw

where F(t,u) = F,(t,u) + F,(t,u), A € [1,2],
2 J(u) =fT(F1(t,u) + F,(t,u))dt. Then J(u) =
0

0,I(u) » o as |yl > . D,(-u) =@, (u) forall A
[1,2] andu € E.

Leta,(A) = uevglﬁlflm@)‘(u) and b, (M) = uezpilﬁﬁlhdn

(u). Define c¢,(A) = if{‘}f}‘j‘gﬁ‘l’A(V(”))’ where I',: = {y
e C(B,.E):yisodd, y|,, =1d}, k=2.

Lemma 1 Assuming that conditions 1), 2)and 4) hold,
then @ e C(B,, E) and J' is compact. We make the follow-
ing assumptions:

(A,) &, maps bounded sets into bounded sets uniformly
for A e [1, 2]. Moreover, for all (A, u) € [1,2] x E,
D,(-u)=>,(u).

(A,) J(u)=0 for all u e E, I(u) > or J(u)—>w as
lull—e, or

(A,) J(u) <O for all u e E, J(u) —oo as |[ul—o.

The proof of lemma 1 is based on lemma 1. 20 and lemma
1.22 in Ref. [10].

Lemma 2""  Assume that (A,) and either (A,) or
(Aj)hold. If b, >a, for all A e [1,2], then ¢, =b, for all A
e[1, 2]. Moreover, for almost every A e [1, 2], there ex-
ists a sequence {u.(A)}7_, such that sup, || ui(A) || <o,
D' (u, (1)) 0, @, (u,(1))—c, (1),

Lemma 3 Under the assumptions of theorem 1, for each

I(u)

as n—oo .

k=2, there exist
r,>0,7,—1 as n— o
BkHoo as k— oo
¢, >b, >0
{z,},.,CE
such that
@ (2,) =0, @ (z,)elb, ¢,

Proof By conditions 1), 2)and 4), for any £ >0, there
exists a C, such that VF,(t,u)u + VF,(t,u)u=C, lu |* -
7 for any u € E. Therefore,

elul® +c,
1 T
@, () = |ul? —Ajo(Fl(r,u) +F,(t,u))dt =
1 T .1
—lulf —)\f f (V F,(t,su) + V F,(t,su))udsdr +
2 0l o

T
1
,\j (F,(1,0) +F,(1,0))dt < —||ulf -
. 2

ACCC, ully = elulf +eiful)) +C

Since u >2, o e (1, 2), for some p, >0 large enough,

we have a,()) = v&nﬁfh @, (u) <0 uniformly for A e [1,

2]. On the other hand, by conditions 1), 2)and 4) for any &
>0, there exists a C, such that \ VF (t,u) + VF,(t,u) \
<C,lul""+elul+c,|ul"" +c,|ul’" for any u e E
and a.e.re [0, T]. Let o, (p) = sup ||u|\[,,ak(a) =

u
ueZ, P‘ ||
o, (0)—0, o, (8) —0, as k—w . We only prove «,(p)—0,

as k—oo . Indeed, if not, then there exist an g, and {u j} CE
withu, LW, |, [[u, || =1, | u, || ,=&, where k—>ow asj
For any ve E we may flnd aw,eW,_, such that w,
—v as j—oo . Therefore, |{(u,v)|=| <uj,w -y < | w,
-v || —0, as j—owo, i.e.u,—0 weakly in E. Hence, u,—
0in L[0, T], where ¢ =1, a contradiction. In the same
way, we can prove other cases. Therefore, for u € Z, and &
small enough, we have the following estimates:

b0 (8) = sup |u||8. Then o, (p) —0,

— 0

@, () =%||u|\2 —AJO(Fl(t,u) +F(ru)di =

AC.

L
P

Ay 1 AC,
=S lulz ==

1
o= lulf

1
S lul?
AC,

= CCllally + Nully + el =

= C(ey(p) |ul? + (o) ful” +ai(d) [ul)

R ST
il

If we choose r, = [16¢(pali(p) + oaf (o) + Sai(é))]%”,
then for u e Z, with |ul|=r,, we obtain

Py ZL6c(pal(p) + 0ai(o) +502(8)17-

1 . ) _
(Z 16y~ Clai ()] (8 2)); =B,

It follows that b, () = Zirll‘fH:

o uniformly for A. Therefore, b,(A) =a,(A). By lemma
2, fora.e. A e[1, 2], there exists a sequence {u'(A)}7_,
such that sup, || u% () || < o, @, (ul(A)) —0, and
@, (us(A))—c(A) =b,(A)=b,, as n— . Furthermore,
since ¢, () <sup®,(u): J' is compact,

ueB,
and then {u:()\) }_, has a convergent subsequence. Hence,
there exists a z, (A) such that @) (z, (A)) =0 and
®,(z,(A)) lb,, ¢,].Evidently, we may find 7,—1 and z,
desired by lemma 3.

Lemma 4 The sequence {z,} _, obtained in lemma 3 is
bounded.

Proof If not, up to a subsequence,
consider w, =z,/ ||z, || , and then || w, | =1.Up to a sub-
sequence, we obtain w,—w weakly in E. Then w,—w in
L[0,T] for g=1 and w, (1) —>w(t) a.e. te [0, T]. We
shall show that {w,}"_, is neither vanishing nor nonvanish-
ing, thereby obtaining a contradiction.

Case 1 Nonvanishing of {w,} _, is impossible. If w0
in E, by lemma 3, we know @' (z,) =0, i.e. |z [} -

&, (u) =b,—x as k—

=c¢,, by lemma 1,

2, | . We

have

n

T
Tnj V F(t,z)z,dt = 0. By = — 1, we
0
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TV F(t,z,)z, ,
J ———— —dt < C. Furthermore, by Fatou’ s lemma

oz,
and conditions 3) to 5), we obtain

"V FK(tz,)z,
[JRRICa
ozl
f lw (1) | V F(t,z,)z, + Vze(t,zﬂ)z”dt _
Wlwzor " Iz, |

J, oo 0 PClz 12 e 2,00 [ dr—

A contradiction.
Case 2 Vanishing of {w,} _, is impossible. If w =0 in
E, we define @ _(s,2,): = max d_(sz,), where s, is irrel-

evant to subscript n. For any ¢ >0 and w,: =(4c)’w,, by

conditions 1) and 4), J(u) e C'(R", R). Then for an n
large enough, we have

1 ) T
D (5,2) =5 sz " -] (F(Lsg) +
0
_ 1
Fy(t,5,2))dt =@ (w,) =—|w, | -
T
nf (F(t,w) +F,(t,w))dt =2c —
;
T,,f (F,(t,w,) +F,(t,w,))dt = ¢
0

It follows that lim@_(s,z,) = . Obviously, s, € [0,

n—oc
1]. Hence,

( (p:-,,( Snzn) > snzn) = 0

¢7—"( Snzn) - %( ¢:—H( Snzn) > Snzn) =
T

| (50 Ftsz)sz, - Fsg,) Jd— e
o\ 2

By condition 5), % VF(t,u)u — F(t,u) increases in u
for u, >0. Combining these with the evenness of F(¢, -)for

,
a.e. te[0,T], and noting that T,,f (% vV F(t,z,)z, —
0

F(t,z,) )dt = @_(z,) € [b,¢,] . We have

Dd(z,) —DP'(z,)z, = f:(;— V F(t,z,)z, —F(t,z,) )dt =

[ (5 7 Fhs,z)sg, - Fisg) oo o
0

®

This provides a contradiction. Hence {z,},_, is bounded.
The proof of lemma 4 is completed.

Proof of theorem 1 By lemma 3 and lemma 4, we have
obtained infinitely many critical points of @. A standard ar-
gument shows that u € E which is a critical point of @ is a
solution of second-order system (1) . Therefore, the proof of

theorem 1 is completed.

n=1
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